
PL I Final Exam Solutions

Kelvin Qian

May 11, 2020

The final exam questions can be found here.

1. [25 points] F[P’ basics

(a) [4 points] BNF grammar for F[P’

e = . . . F [. . . | (e, e) | Let (x, x) = e In e

v = . . . F [. . . | (v, v)

(b) [5 points] Additional opsem rules for F[P’

(Pair)
e1 ⇒ v1 e2 ⇒ v2
(e1, e2)⇒ (v1, v2)

(Pair Let)
e⇒ (v1, v2) e′[v1/x1][v2/x2]⇒ v

Let (x1, x2) = e In e′ ⇒ v

(c) [8 points] Macro encoding of First and Second in F[P’

let fst pr = "Let (x, y) = "^pr^" In x"

let snd pr = "Let (x, y) = "^pr^" In y"

Macro encoding of Let ... In ... in F[P

let let_in e1 e2 =

"Let pr = "^e1^" In

Let x = Fst pr In

Let y = Snd pr In "^e2

Note that encodings may vary across submissions. However, any valid encoding should be
able to work in a hypothetical F[P/F[P’ interpreter.

1

http://pl.cs.jhu.edu/pl/assignments/take-home-final.html

(d) [8 points] A possible F[P’ interpreter eval function. Note that pairs can take values or
expressions.

let rec eval e =

match e with

(* standard Fb expressions, including normal Let *)

| Pair(e1, e2) ->

Pair(eval e1, eval e2)

| LetPair(x1, x2, e1, e2) ->

let Pair(v1, v2) = eval e1 in

let e2’ = subst e2 v1 x1 in

let e2’’ = subst e2’ v2 x2 in

e2’’

An alternate encoding could be to encode a pattern type, such that

type pattern = Var of ident | Pair of ident * ident

Then we can have a unified Let whose first argument has type pattern.

2. [10 points] Operational equivalence in F[P’

(a) [6 points] Operational equivalence principle in F[P’. Note that students may give different
principles; here is one that follows from Definition 2.26 in the book

If e1 ⇒ (v1, v2), then (Let (x1, x2) = e1 In e2) ∼= e2[v1/x1][v2/x2]

(b) [4 points] Proof of Let (x, y) = (Fun z → z)(True, 2 + 1) In (If x Then y Else 0) ∼= 3

Let (x, y) = (Fun z → z)(True, 2 + 1) In (If x Then y Else 0)

(by principle in a) ∼= (If x Then y Else 0)[True/x][3/y]

(by def. 2.26) ∼= 3

3. [20 points] Types in F[P’

(a) [2 points] BNF grammar for TF[P’

τ = . . . F [. . . | (τ, τ)

(e, v, and x are the same as before)

(b) [6 points] New opsem rules for TF[P’

(Pair)
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : (τ1, τ2)

(Regular Let)
Γ ` e : τ Γ, x : τ ` e′ : τ ′

Γ ` Let x : τ = e In e′ : τ ′

(Pair Let)
Γ ` e : (τ1, τ2) Γ, x1 : τ1, x2 : τ2 ` e′ : τ ′

Γ ` Let (x1, x2) : (τ1, τ2) = e In e′ : τ ′

2

(c) [8 points] A possible typechecker (that distinguishes Let and LetPair)

let rec tc gamma e =

match e with

(* standard Fb expressions *)

| Pair(e1, e2) =

let t1 = tc gamma e1 in

let t2 = tc gamma e2 in

TPair(t1, t2)

| LetPair(x1, x2, t, e1, e2) ->

let t’ = tc gamma e1 in

if equals t t’

then

let TPair(t1, t2) = t’ in

tc @@ ((x1, t1) :: ((x2, t2) :: gamma)) e2

else

raise TypeError

| Let(x, t, e1, e2) ->

let t’ = tc gamma e1 in

if equals t t’

then

tc @@ ((x, t’) :: gamma) e2

else

raise TypeError

(d) [4 points] New subtyping rules: Since pairs can be treated as fixed-length records, we will
need to apply similar subtyping rules to pairs. No new subtyping rules are needed if we
encode pairs as records, but if we are implementing pairs directly (as in F[P’) we will need a
new pair rule.

(Sub-Pair)
τ1 <: τ ′1 τ2 <: τ ′2
(τ1, τ2) <: (τ ′1, τ

′
2)

4. [15 points] Operational semantics of printing

(a) [8 points] Opsem rule for F[Print. The important thing to realize is, unlike with state and
actors, print statements must be ordered, so they need to be accumulated in a list. Here, L
is our (ordered) list, v :: L appends v to the end of L, and L1@@L2 appends L2 after L1.
(Note that students may use angle bracket notation).

(Print)
e

L
=⇒ v

Print(e)
v::L
===⇒

(Plus)
e1

L1==⇒ v1 e2
L2==⇒ v2 v1 + v2 = v3

e1 + e2
L1@@L2======⇒ v3

3

(b) [7 points] In AF[V, we can add printing by constructing a pair (L, S), where L is our list
of print statements and S is our global actor set. That way we can preserve the ordering of
print statements while preserving the lack of order in the set of actors and messages.

4

5. [15 points] Joey and the Y-combinator

Note that student answers may vary, so it is best to check them using the F[interpreter. (Ideally
partial credit should be given for code that is conceptually correct, eg. does function argument
reversal, but is syntactically wrong.)

(a) [5 points] joeY internally reverses the arguments of the given function.

joeY = (Let f ->

Let wrapper = Fun this -> Fun arg ->

(Fun this’ -> Fun arg’ -> f arg’ this’) (this this) arg

In wrapper wrapper

(b) [5 points] joeyFix is a function that reverses arguments.

joeyFix = (Fun f -> Fun this’ -> Fun arg’ -> f arg’ this’)

(c) [5 points] joeYY is the same as almostY on page 35 of the book.

joeYY = Fun body -> body body

6. [12 points] Types in TF[mR

(a) [6 points] Type rules for TF[mR (Note: no penalty for writing τ Ref over τ)

(Record)
Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` {l1 = e1; . . . ; ln = en} : {l1 : τ1; . . . ; ln : τn}

(Projection)
Γ ` e : {l1 : τ1; . . . ; ln : τn}

Γ ` e.li : τi for i ∈ {1, . . . , n}

(Mutate)
Γ ` e : {l1 : τ1; . . . ; ln : τn} Γ ` e′ : τi
Γ ` e.li <- e′ : TUnit for i ∈ {l, . . . , n}

(b) [3 points] Subtype or supertype: The answer is subtype. Since the non-record types cannot
change under our rules (even if we mutate values), the usual subtyping rules follow, so

{a: Int, b: Int} <: {a: Int}

(c) [3 points] Subtype or supertype: The answer is neither. In STF[R, it is obvious that

{c: {a: Int; b: Int}} <: {c: {a: Int}}

However, if in STF[mR we mutate the RHS inner record to add additional fields, we get
something like

{c: {a: Int; b: Int}} :> {c: {a: Int, b: Int, c: Int}}

as the LHS is now a supertype of the RHS.

5

7. [15 points] Operational equivalence in AF[V

(a) [6 points] Two expressions in AF[V are equivalent iff they both evaluate to a value given the
same initial global state.

(b) [9 points] It is possible to find e1 and e2 that are equivalent in F[but not in AF[V.

Let e1 = f ; g; 1 and e2 = f ; g; g; 1, where in the context C of AF[V, f sends a message to an
actor and g receives a message from the same actor. It is possible for e1 ∼= e2 in F[but not
in AF[V since the second g in e2 will not receive a message in AF[V, so e2 diverges.

6

