Principles of Programming Languages 2022 Final Exam Key

1 FbAb

a

(* ... Fb rules ... *)

ABORT
Abort = Abort
e1 = Abort e = v eo = Abort
ABORT AND LEFT ABORT AND RIGHT
e1 And ey = Abort e1 And esg = Abort
e1 = Abort e = v es = Abort
ABORT OR LEFT ABORT OR RIGHT
e1 0r ey = Abort e1 0r e = Abort
e1 = Abort er = U1 €2 = Abort
ABORT PLUS LEFT ABORT PLUS RIGHT
e1 + ea = Abort e1 + ea = Abort
e1 = Abort e|1 = U1 eo = Abort
ABORT MINUS LEFT ABORT MINUS RIGHT
e1 — e = Abort e1 — ea = Abort
e1 = Abort e1 = U1 ez = Abort
ABORT EQUALS LEFT ABORT EQUALS RIGHT
e1 = ea = Abort e1 = eg = Abort
e1 = Abort e1 = Abort
ABORT Ir COND ABORT APPLICATION LEFT —M
If e; Theneo Elsees = Abort e1 ea = Abort
e1 = Functionx ->e¢ e9 = Abort

ABORT APPLICATION RIGHT

e1 es = Abort

e1 = Abort
Letx = e; Iney = Abort

ABORT LET

Note that we don’t need to specify additional rules for Ifr TRUE and IF FALSE because
the existing rules suffice to abort the evaluation.
b
Yes, because Abort alters the flow of the execution and can introduce nondeterminism to
programs expecting an Abort (or not). This is very similar to the case of exceptions.
c

e = ¢ iff for all contexts C' such that Cle] and Cle/] are both closed expressions, Cle] = v
for some v iff C[e/] = v’ for some v' or Ce] = Abort iff Cle/] = Abort.



d

The pure functional law no longer holds. Consider the following counterexample:

Leta = (00)InLetb = AbortIne 2! Letb = Abort InLeta = (0 0) Ine

2 Mutable list

a
type 'a list = Mt | Cons of 'a ref * 'a list
b
type 'a linked_list = Mt | Cons of 'a * ('a linked_list ref)
c
let append 11 12 =
let rec append_aux 1 11 12 =
match 11 with
| Mt -> 12
| Cons (_, xs) —>
match !xs with
| Mt > xs := 12; 1
| _ -> append_aux 1 !xs 12
in
append_aux 11 11 12
3 AFbLV
a
S Sl 1"
e] — U1 €9 — V9 V1 a4 V2 — U3
CREATE S5 US U fams))
Create (e, e2) e a,for a a fresh actor name
b

This self-notice is necessary because when a message sender needs a reply from the receiver,
it needs to know its own address before sending it to the receiver. This also applies when an
actor creates another actor; the one created knowing who created it is necessary for practical
collaborative tasks.



Further, knowing its own address enables an actor to send messages to itself, which can
be useful in certain scenarios, like yielding control to other tasks while performing some
intensive computation.

4 EFDbS

(* ... EFb rules ... *)

F'Fe:7\E o 'Fe:7T\E
F ET
I'FRefe:TRef \E I'Fle:a\EU{T = aRef}

'Fe:T\E ke :r\E
T
F'te:=¢€¢:a\EUE U{r =aRef, 7 =a}

RE

SE

... EFb set closure algorithm ... *)

For each equation of the form aRef = o/ Ref, add a = o’ to the set.

C

(* ... EFb consistency checks ... *)
No immediate inconsistencies like a«Ref = Int, a«Ref = Bool, or aRef = 7->7'.
Note that we don’t need a clause for checking cases of a Ref = o/ Ref where a # o’ because

a = o would have been added to the set when performing the closure and checked via
existing clauses.

5 ANF
We prove f (r+5) —2 = Letz; =z +5Inletxy = f oy InLetxy = 29 — 2 Inxgz via the

following;:
By operation execution ordering, we have

f((x+5)—2=Letx;=f (r+5)InLetzy =2Inx; — 29 (1)

By the pure functional law, we have

Letz; = f (x+5)InLetxo = 2Inzy — X9
>~ Letxy =2InLleta; = f (z+5)Inx; — 29 (2)



By Let-3, we have

Letxzy =2Inletx; = f (v +5) Inz) — a9
= (Letzy = f (z+5)Inx; — x9)[2/29)
=Letx;=f (z+5)Inz —2

By Transitivity on (1), (2), and (3), we have

fx+b)—2%Letay=f (x+5)Inz; —2

Again, by operation execution ordering, we have

f(x+5)=Letr; = fInLetay =x+5Inx; 9

By Let-3, we have

Letz; = fInLetaxys =2+ 5Inx; 29
= (Letxy = v+ 5Inzy x9)[f /2]
=Letaxys=x+5Inf 29

By Transitivity on (5) and (6), we have

fx+5) X Letzo=x+5Inf xo

By Congruence in (7), we have

Letzy = f (v +5)Inz; —2
~letr) = (Letxo=x+5Inf z5)Inz — 2

By Associativity, we have

Letz; = (Letzy =2+ 5Inf 25) Inxy — 2
X Lletxy=x+5Inletx; = f xoInx; — 2

By renaming variables via Let-a (steps omitted), we have

Letxo =x+5Inletx; = f x9Inx; —2
S letr;=x+5Inletry = f x;Inxy — 2

By Return, we have

(10)



Letz3 =29 —2Inzs X a9 — 2 (11)

By Symmetry on (11), we have

To— 2= Letas = a9 — 2Inxs (12)

By Congruence in (10), we have

Letxy =x+5Inletaxy=f x1Inxy — 2

YLetry =+ 5Inletwy = f 1 Inletxs =20 —2Inxg

By Transitivity on (4) through (12), we have proven

f(x+5)—2=Letx; =x+5InLetazy = f z1InLetxg =29 —2Inx;

6 STFbR++

a

(* ... STFbR rules ...

")

SUB-RECORD-INT
F{l s in T} < Int

QOFE5:Int (FTrue:Bool
PH{a=5;b=True}:{a:Int;b:Bool} F{a:Int;b:Bool}<:Int

(F4:Int {a=5;b=True}:Int

0F4+{a=>5;b=True}: Int



