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The Java Security Architecture includes a dynamic mechanism for enforcing access control checks,

the so-called stack inspection process. While the architecture has several appealing features, access
control checks are all implemented via dynamic method calls. This is a highly non-declarative form

of specification which is hard to read, and which leads to additional run-time overhead. This paper

develops type systems which can statically guarantee the success of these checks. Our systems
allow security properties of programs to be clearly expressed within the types themselves, which

thus serve as static declarations of the security policy. We develop these systems using a systematic
methodology: we show that the security-passing style translation, proposed by Wallach, Appel
and Felten as a dynamic implementation technique, also gives rise to static security-aware type

systems, by composition with conventional type systems. To define the latter, we use the general
HM(X) framework, and easily construct several constraint- and unification-based type systems.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs

and Features—control structures; polymorphism; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—type structure

General Terms: Languages, reliability, security, theory

Additional Key Words and Phrases: Type systems, stack inspection, access control

1. INTRODUCTION

The Java Security Architecture [Gong and Schemers 1998; Gong 1998], found in
the Java JDK 1.2 and later, includes mechanisms to protect systems from opera-
tions performed by untrusted code. These access control decisions are enforced by
dynamic checks. Our goal is to make some or all of these decisions statically, by
extensions to the type system. Thus, access control violations will be caught at
compile-time rather than run-time. Furthermore, these type extensions constitute
a statically-specified security policy, which is much preferred to a dynamic one.
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1.1 The Java Security Architecture

We now briefly review the Java security Architecture [Gong and Schemers 1998;
Gong 1998; Wallach 1999]. The stack inspection algorithm underlying the architec-
ture is primarily concerned with code-based access control: in a single JVM can be
found code loaded from different codebases, and code from each codebase may have
different access rights. For instance, applets should not be allowed to read and write
arbitrary files, but applets may be allowed to read and write files in /tmp/*. Thus,
applets may have a FilePermission for read/write to /tmp/*, but no permissions
to read or write any other files.

The stack inspection system is used in two different modes; these two differ-
ent modes are not stated very clearly in the literature so we review them now.
In the first mode, a checkPermission() command is executed before a criti-
cal operation, such as a system library about to do a low-level file write; if this
command does not raise an exception, execution continues and the file is writ-
ten. For the applet example, if the applet tries to write /tmp/scratch2232, the
checkPermission() will succeed since the applet has this privilege (we will de-
scribe the checking process in more detail below). In the second mode, there may
be a need to temporarily raise privileges to allow the system to perform a privi-
leged operation for untrusted code. An example is the system may need to read
a font file, /usr/java/fonts/helvetica.fnt, so the applet can use this font, but
this would otherwise cause an exception since the applet cannot read that file:
the checkPermission() for read of /usr/java/fonts/helvetica.fnt would fail.
The doPrivileged() command is designed to solve this problem: the system can
execute doPrivileged(readFontCode) where readFontCode reads the font and
is executed with system, not applet, privileges; and, the checkPermission() will
succeed since it was executed as a system-privileged operation.

Access control decisions of checkPermission() are made using a stack inspection
algorithm. The original requestor of an action such as a file read may be far back
on the call stack: the applet invoked some system file method which in turn invoked
other system methods . . . which finally invoked a low-level system method to read
the file which invoked checkPermission(). So, back on the call stack is a frame
owned by the applet codebase. The checkPermission() thus searches back the
stack, making sure every frame’s codebase has the permission needed. This covers
the first case of usage above. For the second case, where a temporary raising of
privileges is needed to e.g. read a font file, the doPrivileged() command adds
a flagged stack frame to the stack which performs the privileged operation; when
a privilege is checked via the checkPermission() command, the stack frames are
searched most to least recent. If a doPrivileged frame for the relevant permission
is encountered, and the codebase of every frame up to and including that one
is authorized for the permission, the check terminates successfully: even though
applet stack frames may be further up the stack because applet code induced the
font load, its privileges are not queried.

1.1.1 Java’s Lack of Full Declarativity. The Java Security Architecture is pop-
ular in practice and embodies several useful principles, but it also has some weak-
nesses. There is a performance penalty to pay due to the need for run-time stack
inspection. The architecture also is not as declarative as it could be, but for secu-
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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rity policies it is important to be maximally declarative: fixed, immutable policies
have fixed meaning.

The Java policy file is a fixed declaration of privilege authorizations for code-
bases, so this aspect of the architecture is sufficiently declarative. The problem
is how this policy is enforced in the code: e.g. is code from foo.com indeed re-
stricted at runtime from writing to "/tmp", if this is declared in the policy file?
In fact, implementation of this policy requires that there be appropriate insertions
of checkPermissions which guard all low-level file accesses, which are checked dy-
namically. Thus, a programmer must have a perfect understanding of the control
flow of the underlying program to guarantee that proper checks are in place. This
obviously makes it difficult to see whether the code is implementing the correct
policy; in large programs, tens of thousands of lines long, how can programmers
have such a perfect understanding?

This paper explores solutions to these problems through the use of static type
systems. If types can declare precisely the privileges needed for an invocation of
a method to avoid run-time security exceptions, these types could give a top-level
declaration of the permissions needed by each chunk of code, and programmers
could verify that the correct policies are implemented without having to understand
the complete codebase.

1.2 Our Framework

We define a security typing system which statically typechecks, and thus statically
verifies success of, the run-time access control checks. This obviates the need for
stack inspection at run-time, since all the checks have been proven to succeed at
compile-time. In this paper, a foundational framework is developed; there still
are several important issues to be addressed before it could be applied to a real
language such as Java.

We employ several technical tools to streamline the results. We reduce the se-
curity typing problem to a conventional typing problem using a translation-based
method inspired by [Pottier and Conchon 2000]. We use a standard language of
row types [Rémy 1992b] to describe sets of privileges. We also re-use the HM(X)
framework [Odersky et al. 1999; Sulzmann 2000], which allows a wide variety of
type systems to be defined in a single stroke, saves some proof effort, and (most
importantly) shows that our custom type systems arise naturally out of a standard
one. Some technical results about HM(X) are drawn from [Skalka and Pottier
2002]. We develop several different type systems, including both constraint-based
and unification-based systems.

We begin by defining a simplified model of the Java Security Architecture, λsec.
This calculus is equipped with a non-standard operational semantics that includes a
specification of stack inspection. In order to construct a static type system for λsec,
we translate it into a standard λ-calculus, called λset. The translation is a security-
passing style transformation [Wallach 1999; Wallach et al. 2000]: it implements
stack inspection by passing around sets of privileges at run-time. For this purpose,
λset is equipped with built-in notions of set and set operations. The translation is
proven to be correct, in that program semantics are preserved in translation.

Then, we define a type system for λset. Because λset is a standard λ-calculus, we
are able to define our type system as a simple instance of the HM(X) framework
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r ∈ R, R ⊆ R resources
p ∈ P, P ⊆ P,where P = 2R principals

v ::= fix z.λx.f values

e ::= x | fix z.λx.f | e e | letx = e in e | enable r in e | check r then e | expressions
test r then e else e | f

f ::= p.e signed expressions

E ::= [] | E e | v E | letx = E in e | enable r inE | p.E evaluation contexts

Fig. 1. Grammar for λsec

[Odersky et al. 1999]. In fact, by using this framework, a whole family of type
systems may be succinctly defined, each with different costs and benefits. In order
to give precise types to λset’s built-in set operations, our instance uses set types,
defined as a simplification of Rémy’s record types [Rémy 1992b].

Due to correctness of the λsec-to-λset translation, and type safety within the λset

type framework, an indirect type analysis for λsec is immediately obtained. That is,
a sound typing for any λsec expression is the type of its encoding in λset. However,
a direct type system that treats λsec expressions themselves is still desirable, for
various reasons (e.g. efficiency, error reporting). Thus, we lastly define direct type
systems for λsec, which are based on, or “derived” from, analogous λset type systems.
As an appealing consequence of our technical approach, a direct type safety result
follows easily from indirect type safety, correctness of the λsec-to-λset translation,
and a straighforward syntactic correspondance between the direct and indirect type
systems.

This paper expands on the conference paper [Pottier et al. 2001], which was itself
a refiguration of the ideas first presented in [Skalka and Smith 2000]. The latter
paper defined the first static type analysis for stack inspection. There, function
types are of the form τ1

Π−→ τ2, where τ1 and τ2 are “ordinary” types, and Π
represents a family of sets containing at least the permissions necessary to use
the function. An inference technique based on a set constraint solution algorithm
was defined to implement the system. However, the system is non-standard and
monomorphic; these shortcomings are addressed in [Pottier et al. 2001] and the
current paper, which extend the type analysis to a polymorphic setting, using
standard type logics with well-studied and efficient inference methods.

2. THE SOURCE LANGUAGE λsec

This section defines λsec, a simplified model of the security architecture of the JDK
1.2 and later. It is a λ-calculus equipped with a notion of code ownership and con-
structs for enabling or checking privileges. For the sake of formal simplicity, we do
not define stacks explicitly; rather, stacks are implicit in λsec evaluation contexts,
and can be gleaned from them. This is in contrast to a version of the calculus
presented in [Skalka 2002] with explicit stacks, inspection thereon, and a dopriv
construct, called λSsec, that clearly reflects the JDK implementation details. How-
ever, λSsec is shown to be embeddable in λsec in [Skalka 2002], ensuring confidence
in the correctness of λsec as a model of the Java JDK architecture.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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We assume given an arbitrary set R of resources (also known as privileges). We
use r and R to range over resources and over sets thereof, respectively. Following
Fournet and Gordon [Fournet and Gordon 2002], we define the set of principals P
as the powerset of R, that is, we identify a principal with the set of resources to
which it has access. We use p and P to range over principals and over sets thereof,
respectively. We write nobody for the empty privilege set, that is, for the principal
with no access rights. For typing purposes, we shall require every set of resources
to be either finite or cofinite (Section 5.3).

The reader may be somewhat puzzled by the fact that both p and R range over
sets of resources. The choice of notation is intended to reflect the manner in which
a set of resources is obtained. On the one hand, the notation p represents the set of
resources associated (via an implicit access rights matrix) with some principal name,
found in the code. On the other hand, the notation R represents an arbitrary set of
resources and may be the result of a computation involving union and intersection
operations. In other words, p represents what Fournet and Gordon refer to as a
“static” set of privileges, while R represents a “dynamic” set of privileges.

The grammar of λsec is given in Fig. 1. An abstraction fix z.λx.f may recursively
refer to itself through the program variable z. (This conflation of the fix and λ
binders simplifies the treatment of recursion.) We write λx.f when z does not
appear free in f . The let form does not make the untyped calculus more expressive;
instead, as in ML, it is used by the type system to determine where polymorphism
may be introduced. A signed expression p.e behaves as the expression e endowed
with the authority of principal p. The body of every λ-abstraction is required to
be a signed expression – thus, every piece of code must be vouched for by some
principal. The construct enable r in e allows an authorized principal to enable the
use of a resource r within the expression e. The construct check r then e asserts that
the use of r is currently enabled. If r is indeed enabled, e is evaluated; otherwise,
execution fails. The construct test r then e1 else e2 dynamically tests whether r is
enabled, branching to e1 or e2 if this holds or fails, respectively. Versions of enable,
check, and test that bear on a set of resources R, as opposed to a single resource r,
may be later introduced as syntactic sugar.

2.1 Stack Inspection

The JDK determines whether a resource is enabled by literally examining the run-
time stack, hence the name stack inspection. We give a simple specification of
this process by noticing that stacks are implicitly contained in evaluation contexts,
whose grammar is defined in Fig. 1. Indeed, a context defines a path from the
term’s root down to its active redex, along which one finds exactly the security
annotations which the JDK would maintain on the stack, that is, code owners p
and enabled resources r.

To formalize this idea, we associate to every evaluation context E a finite string
|E | of principals and resources, called a stack. The right-most letters in the string
correspond to the most recent stack frames. We write ε for the empty stack and
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r ∈ p S ` r
S.p ` r

S ` r
S.r′ ` r

S `• r
S.r ` r

S `• r
S.r′ `• r

r ∈ p
S.p `• r

Fig. 2. Backward stack inspection algorithm

nobody,∅, S ` R
r ∈ R
S ` r

p,R, ε ` R
p′, R ∩ p′, S ` R′

p,R, p′.S ` R′
p,R ∪ ({r} ∩ p), S ` R′

p,R, r.S ` R′

Fig. 3. Forward stack inspection algorithm

S1.S2 for the concatenation of the stacks S1 and S2.

|[]| = ε |E e| = |E |
|v E | = |E | |letx = E in e| = |E |

|enable r inE | = r.|E | |p.E | = p.|E |

We can now define a “stack inspection” algorithm. We give two variants of it,
a backward (Fig. 2) and a forward one (Fig. 3). Both are defined in terms of a
judgement of the form S ` r, which may be read: inspecting the stack S to check
privilege r succeeds. The former algorithm scans the stack, starting with the most
recent frames, then moving towards their ancestors. The latter, on the other hand,
scans the stack in the order it was built. Furthermore, its formulation is altered so
that it internally computes not only whether access to a given resource r is legal, but
also the set of all resources which may be legally accessed given the current stack.
These algorithms are referred to as lazy and eager, respectively, by Gong [Gong and
Schemers 1998; Gong 1998]. While the former is employed by most current JVM
implementations, the latter forms the basis of the security-passing style [Wallach
1999] translation which we will introduce in Sect. 4.

The following theorem states that forward and backward stack inspection are
in fact equivalent. This initial result is later used to establish the correctness of
security-passing style (Theorem 2). Subsequently, we will write S ` r without
specifying which of the two algorithms is being used. We will also write E ` r for
|E | ` r.

Theorem 1. Assume given a stack S and a resource r. Let P stand for the set
of all principals that contain r. Then, the following three statements are equivalent:

(1 ) S ` r holds according to the rules of Fig. 2;
(2 ) S ` r holds according to the rules of Fig. 3;
(3 ) some suffix of S belongs to the regular language PR?r(P | R)?.

Proof. We begin by proving that the first statement is equivalent to the third
one. First, check that the auxiliary judgement S `• r holds if and only if some
suffix of S belongs to PR?. Then, check that S ` r holds, according to the rules of
Fig. 2, if and only if some suffix of S belongs to the regular language PR?r(P | R)?.
Each of these checks is immediate.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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We now prove that the second statement is equivalent to the third one. Let A
(resp. B, resp. C) be the set of stacks S such that ∃R′ 3 r p,R, S ` R′ for some
(or, equivalently, for all) p, R such that p 63 r ∧ R 63 r (resp. p 3 r ∧ R 63 r, resp.
p 3 r ∧R 3 r). It is straightforward to check that, according to the last three rules
in Fig. 3, A, B and C are the least solutions to the following recursive equations:

A ::= P.B | (P \ P ).A | R.A
B ::= P.B | (P \ P ).A | r.C | (R \ {r}).B
C ::= ε | (P \ P ).A | (P | R).C

An inductive argument shows thatA ⊆ B ⊆ C holds. Then, through a few rewriting
steps, one can bring the equations into a form where it is evident that A is exactly
(P | R)?PR?r(P | R)?. We do not give the details. In principle, the check can
be mechanized by verifying that the minimal deterministic finite automaton (over
the 4-symbol alphabet {r}, R \ {r}, P and P \ P ) associated with this regular
expression is exactly the one described by the above equations. There remains to
conclude by noticing that, according to the first rule in Fig. 3, S ` r holds if and
only if S ∈ A.

2.2 Operational Semantics for λsec

The operational semantics of λsec is defined by the following reduction rules:

E[(fix z.λx.f) v] → E[f [v/x][fix z.λx.f/z]]
E[letx = v in e] → E[e[v/x]]
E[check r then e] → E[e] if E ` r

E[test r then e1 else e2] → E[e1] if E ` r
E[test r then e1 else e2] → E[e2] if ¬(E ` r)

E[enable r in v] → E[v]
E[p.v] → E[v]

The evaluation context E is made explicit in every rule, which allows looking it
up when needing to perform security checks. Note that it is not the case that
e → e′ implies E[e] → E[e′]. Indeed, enclosing e within a new evaluation context
E enables more privileges, possibly causing tests of the form test r then e1 else e2 to
be resolved differently.

The first two rules are standard. The next rule allows check r then e to reduce
into e only if stack inspection succeeds (as expressed by the side condition E ` r);
otherwise, execution is blocked. The following two rules use stack inspection in a
similar way to determine how to reduce test r then e1 else e2; however, they never
cause execution to fail. The last two rules state that security annotations become
unnecessary once the expression they enclose has been reduced to a value. In a
Java virtual machine, these rules would be implemented simply by popping stack
frames (and the security annotations they contain) after executing a method.

This operational semantics constitutes a concise, formal description of Java stack
inspection in a higher-order setting. It is easy to check that every closed term
either is a value, or is reducible, or is of the form E[check r then e] where ¬(E ` r).
Terms of the third category are stuck ; they represent access control violations. An
expression e is said to go wrong if and only if e→? e′, where e′ is a stuck expression,
holds.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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e ::= x | v | e e | letx = e in e expressions
v ::= fix z.λx.e | R | .r | ?r | ∨R | ∧R values

E ::= [] | E e | v E | letx = E in e evaluation contexts

Fig. 4. Grammar for λset

JxKp = x
Jfix z.λx.fKp = fix z.λx.λs.JfK

Je1 e2Kp = Je1Kp Je2Kp s
Jletx = e1 in e2Kp = letx = Je1Kp in Je2Kp

Jenable r in eKp = let s = s ∨ ({r} ∩ p) in JeKp
Jcheck r then eKp = let = s.r in JeKp

Jtest r then e1 else e2Kp = s?r (λs.Je1Kp) (λs.Je2Kp)

JfKp = JfK

Jp.eK = let s = s ∧ p in JeKp

Fig. 5. Source-to-Target Translation

3. THE TARGET CALCULUS λset

We now define a standard calculus, λset, to be used as the target of our translation.
It is a λ-calculus equipped with a number of constants which provide set operations,
and is given in Fig. 4. We will use e.r, e?r, e ∨R and e∧R as syntactic sugar for
(.r e), (?r e), (∨R e) and (∧R e), respectively.

The constant R represents a constant privilege set. The construct e.r asserts that
r is an element of the set denoted by e; its execution fails if that is not the case. The
construct e∨R (resp. e∧R) allows computing the union (resp. intersection) of the
set denoted by e with a constant set R. Lastly, the expression e?r x y dynamically
tests whether r belongs to the set R denoted by e, and accordingly invokes x or y,
passing R to it. The operational semantics for λset is as follows:

(fix z.λx.e) v → e[v/x][fix z.λx.e/z]
letx = v in e → e[v/x]

R.r → R if r ∈ R
R?r → λx.λy.(xR) if r ∈ R
R?r → λx.λy.(y R) if r 6∈ R

R1 ∨R2 → R1 ∪R2

R1 ∧R2 → R1 ∩R2

E[e] → E[e′] if e→ e′

Again, an expression e is said to go wrong if and only if e→? e′, where e′ is a stuck
expression, holds.

4. SOURCE-TO-TARGET TRANSLATION

4.1 Definition

A translation of λsec into λset is defined in Fig. 5. The distinguished identifiers s and
are assumed not to appear in source expressions. Notice that s may appear free
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in translated expressions. Translating an (unsigned) expression requires specifying
the current principal p.

One will often wish to translate an expression under minimal hypotheses, i.e.
under the principal nobody and a void security context. To do so, we define L e M =
JeKnobody[∅/s]. Notice that s does not appear free in L e M. If e is closed, then so is
L e M.

The idea behind the translation is simple: the variable s is bound at all times
to the set of currently enabled resources. Every function accepts s as an extra
parameter, because it must execute within its caller’s security context. As a result,
every function call has s as its second parameter. The constructs enable r in e and p.e
cause s to be locally bound to a new value, reflecting the new security context; more
specifically, the former enables r, while the latter disables all privileges not available
to p. The constructs check r then e and test r then e1 else e2 are implemented simply
by looking up the current value of s. In the latter, s is re-bound, within each
branch, to the same value. This may appear superfluous at first sight, but has
an important impact on typing, because it allows s to be given a different (more
precise) type within each branch.

This translation can be viewed as a generalization of the security-passing style
transformation [Wallach 1999; Wallach et al. 2000] to a higher-order setting. While
Wallach et al. advocated this idea as an implementation technique, with efficiency
in mind, we use it only as a vehicle in the proof of our type systems. Here, effi-
ciency is not at stake: it is sufficient that the translation scheme be correct. The
next section is devoted to proving this (in addition to its utility for our technical
purposes, it is the first formal correctness result for security-passing style).

One should point out that this correctness proof is made necessary only by the
fact that we chose to define the semantics of λsec at the source level (section 2.2).
If, instead, we had chosen to consider the security-passing style translation as a
definition of λsec’s semantics, then no proof would be necessary. Banerjee and
Naumann [Banerjee and Naumann 2001] follow the latter approach, by giving a
denotational semantics which incorporates the security-passing style translation.

4.2 Properties

A basic property of the translation is that s never appears free in the translation
of a value. Furthermore, the translation of a value does not depend on the current
principal, so we write JvK instead of JvKp.

For the purposes of our proofs, we need to isolate a particular sub-class of target
language reductions, which we wish to view as “administrative” (in a sense to be
explained later). Let →∼ be the subset of →? defined by

a ::= R | a ∨R | a ∧R
let s = a in e →∼ e[R/s] if a→? R

E[e] →∼ E[e′] if e→∼ e′

Our first lemma expresses the fact that the translation implements the forward
stack inspection algorithm. It states that if p,R, E ` R′ holds (as per the rules
of Fig. 3), then evaluating JE[e]Kp in a context where s is bound to R leads to
evaluating JeKp′ , for some p′, in a context where s is bound to R′. Furthermore,
this is a purely administrative reduction sequence. That is, it only affects the
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security context, and does not reflect any computational steps apparent in the
original program. The proof of the lemma presents no difficulty, because of the
close similarity between the definitions of the translation function and of the stack
inspection algorithm.

Lemma 1. Assume p,R, S ` R′ and S = |E |. Then, there exist a (target)
evaluation context E′ and a principal p′ such that, for every source expression e,

JE[e]Kp[R/s]→?
∼
E′[JeKp′ [R′/s]]

Proof. By induction over the structure of E. Let θ and θ′ stand for the substi-
tutions [R/s] and [R′/s], respectively.

Case E = []. Then, S = ε and R = R′. Thus, picking E′ = [] and p′ = p trivially
satisfies our requirement.

Case E = E1 e1. Then,

JE[e]Kpθ = JE1[e]Kpθ Je1Kpθ R

Furthermore, the induction hypothesis, applied to E1, yields E′1 and p′ such that
JE1[e]Kpθ →?

∼
E′1[JeKp′θ′]. So, picking E′ = E′1 Je1Kpθ R fits the bill.

Case E = v E1. This case is similar to the previous one. Apply the induction
hypothesis to obtain E′1 and p′. Then, pick E′ = JvK E′1 R. (E′ is indeed an
evaluation context, because JvK is a value.)

Case E = letx = E1 in e1. This case is also similar. Apply the induction hypoth-
esis to obtain E′1 and p′. Then, pick E′ = letx = E′1 in Je1Kpθ.

Case E = enable r inE1. Then, S = r.S1, where S1 = |E1 |. Thus, from p,R, S `
R′, we may deduce p,R1, S1 ` R′, where R1 stands for R ∪ ({r} ∩ p). Define
θ1 = [R1/s]. Then,

JE[e]Kpθ = let s = R ∨ ({r} ∩ p) in JE1[e]Kp
→∼ JE1[e]Kpθ1

Applying the induction hypothesis to E1 yields E′1, p′ such that JE1[e]Kpθ1 →?
∼

E′1[JeKp′θ′]. So, picking E′ = E′1 meets our goal.
Case E = p1.E1. Then, S = p1.S1, where S1 = |E1 |. Thus, from p,R, S ` R′, we

may deduce p1, R1, S1 ` R′, where R1 stands for R∩ p1. Define θ1 = [R1/s]. Then,

JE[e]Kpθ = let s = R ∧ p1 in JE1[e]Kp1

→∼ JE1[e]Kp1θ1

Applying the induction hypothesis to E1 yields E′1, p′ such that JE1[e]Kp1θ1 →?
∼

E′1[JeKp′θ′]. So, picking E′ = E′1 meets our goal.

We now come to our central lemma, stating that, if a source expression e leads, in
one computation step, to a source expression e′, then the translation of e reduces,
modulo administrative reductions, to the translation of e′.

Lemma 2. e → e′ implies L e M →? · ?
∼
← L e′ M. Furthermore, if the reduction

e→ e′ is a β-reduction step, then the reduction sequence L e M→? · involves at least
one β-reduction step.

Proof. The assertion e → e′ must be an instance of one of the reduction rules
that define the operational semantics (Section 2.2), all of which are of the form
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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E[e0]→ E[e′0]. Thus, there exist E, e0, and e′0 such that e is E[e0] and e′ is E[e′0]
and e0, e′0 have the shape required by one of the reduction rules.

Let S = |E |. There exists a unique R such that nobody,∅, S ` R. Clearly, for
any resource r, E ` r is equivalent to r ∈ R. Define θ = [R/s]. According to
Lemma 1, there exist an evaluation context E′ and a principal p such that, for any
source expression e,

LE[e] M→?
∼
E′[JeKpθ]

Assume, for the time being, that Je0Kpθ →? Je′0Kpθ holds. Then, we have

L e M = LE[e0] M →?
∼
E′[Je0Kpθ]

→? E′[Je′0Kpθ]
?
∼
← LE[e′0] M = L e′ M

which is the desired result. Hence, there only remains to prove Je0Kpθ →? Je′0Kpθ,
which we now do, by cases on the form of e0 and e′0. By definition of e0 and e′0,
there is one case per reduction rule.

Case e0 = (fix z.λx.f) v, e′0 = f [v/x][fix z.λx.f/z]. Then,

Je0Kpθ = J(fix z.λx.f) vKpθ
= (Jfix z.λx.fK JvK s)θ
= (fix z.λx.λs.JfK) JvKR because s cannot appear free in values
→2 JfK[JvK/x][Jfix z.λx.fK/z]θ
= Jf [v/x][fix z.λx.f/z]Kθ by a straightforward auxiliary lemma
= Je′0Kpθ

The auxiliary lemma mentioned above takes advantage of the fact that the trans-
lation of a value JvKp does not depend upon the parameter p. We omit its proof.

Case e0 = letx = v in e1, e′0 = e1[v/x]. Then,

Je0Kpθ = Jletx = v in e1Kpθ
= letx = JvK in Je1Kpθ because s is not free in JvK
→ Je1Kpθ[JvK/x]
= Je1Kp[JvK/x]θ
= Je1[v/x]Kpθ by the same auxiliary lemma
= Je′0Kpθ

Case e0 = enable r in v, e′0 = v. Then,

Je0Kpθ = Jenable r in vKpθ = let s = R ∨ ({r} ∩ p) in JvK
→2 JvK = Je′0Kpθ

Again, we take advantage of the fact that s does not occur free in JvK.
Case e0 = check r then e1, e′0 = e1. We must have E ` r, hence r ∈ R. Then,

Je0Kpθ = Jcheck r then e1Kpθ = let = R.r in Je1Kpθ
→2 Je1Kpθ because r ∈ R
= Je′0Kpθ
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Case e0 = test r then e1 else e2. Then, e′0 equals ei, where i = 1 if E ` r (or,
equivalently, if r ∈ R), and i = 2 otherwise. Thus, we have

Je0Kpθ = Jtest r then e1 else e2Kpθ = R?r (λs.Je1Kp) (λs.Je2Kp)
→3 (λs.JeiKp)R
→ JeiKpθ = Je′0Kpθ

Case e0 = p1.v, e′0 = v. Then,

Je0Kpθ = Jp1.vKpθ = let s = R ∧ p1 in JvK
→2 JvK = Je′0Kpθ

Again, we take advantage of the fact that s does not occur free in JvKp, and of the
fact that this expression does not depend on p.

This result is easily generalized to reduction sequences of arbitrary length:

Lemma 3. e →? e′ implies L e M →? · ?
∼
← L e′ M. Furthermore, if the reduction

sequence e→? e′ involves k β-reduction steps, then the reduction sequence L e M→? ·
involves at least k β-reduction steps.

Proof. By induction on the length of the reduction sequence e →? e′. In the
base case, we have e = e′, and the result is immediate. In the inductive case, we
have e → e1 →? e′. By applying Lemma 2, on the one hand, and the induction
hypothesis, on the other hand, we obtain

L e M→? · ?
∼
← L e1 M→? · ?

∼
← L e′ M

where the number of β-reduction steps in the sequences L e M→? · and L e1 M→? · is at
least as high as in the source reduction sequences e→ e1 and e1 →? e′, respectively.
Because the operational semantics of the target language is deterministic, one of
the two reduction sequences starting at L e1 M above must be a sub-sequence of the
other. In either case, the diagram collapses down to

L e M→? · ?
∼
← L e′ M.

Furthermore, because β-reduction is not an administrative reduction, the number
of β-reduction steps in the sequence L e M →? · is at least as high as in the original
reduction sequence e→? e′.

As a corollary, we obtain a soundness theorem for the translation. It essen-
tially states that security-passing style is a valid implementation of the Java stack
inspection discipline.

Theorem 2. If e→? v, then L e M→? L v M. If e goes wrong, then L e M goes wrong.
If e diverges, then L e M diverges.

Proof. First, assume e reduces to a value v. Then, Lemma 3 yields L e M →?

· ?
∼
← L v M. Because L v M is a value, this diagram collapses down to L e M→? L v M.
Second, assume e goes wrong. Then, e→? e′, where e′ is stuck, holds. We prove

that L e M goes wrong by induction on the length of this reduction sequence.
In the base case, we have e = e′, i.e. e is stuck. So, e must be of the form

E[check r then e1], where ¬(E ` r). Let S = |E |. There exists a unique R′ such
that nobody,∅, S ` R′. Necessarily, r 6∈ R′. According to Lemma 1, L e M may be
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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hm-Var

Γ(x) = σ C 
 σ

C,Γ ` x : σ

hm-Const

C,Γ ` c : ∆(c)

hm-Sub

C,Γ ` e : τ C 
 τ ≤ τ ′

C,Γ ` e : τ ′

hm-∀ Intro

C ∧D,Γ ` v : τ ᾱ ∩ fv(C,Γ) = ∅

C ∧ ∃ᾱ.D,Γ ` v : ∀ᾱ[D].τ

hm-∀ Elim

C,Γ ` v : ∀ᾱ[D].τ C 
 [τ̄/ᾱ]D

C,Γ ` v : [τ̄/ᾱ]τ

hm-Abs

C, (Γ;x : τ ; z : τ → τ ′) ` e : τ ′

C,Γ ` fix z.λx.e : τ → τ ′

hm-App

C,Γ ` e1 : τ2 → τ C,Γ ` e2 : τ2

C,Γ ` e1 e2 : τ

hm-Let

C,Γ ` v : σ C, (Γ;x : σ) ` e : τ

C,Γ ` letx = v in e : τ

Fig. 6. The system HM(X)

reduced to a term of the form E′[Jcheck r then e1Kp′θ′], where θ′ = [R′/s]. It is easy
to check that such a term is stuck. Hence, L e M goes wrong.

In the inductive case, we have e → e1 →? e′. Our induction hypothesis shows
that L e1 M goes wrong. Furthermore, Lemma 2 shows that L e M reduces to some
reduct of L e1 M. Because reduction is deterministic, L e M must go wrong as well.
The result follows.

Third, assume e admits an infinite reduction sequence. This sequence must
involve an infinite number of β-reduction steps, because the semantics of λsec,
deprived of the β-reduction rule, is terminating. By Lemma 3, L e M admits an
infinite reduction sequence as well.

5. TYPES FOR λset

We define a type system for the target calculus as an instance of the paramet-
ric framework HM(X) [Odersky et al. 1999; Sulzmann 2000; Skalka and Pottier
2002]. HM(X) is a generic type system in the Hindley-Milner tradition, parame-
terized by an abstract constraint system X. Sect. 5.1 briefly recalls its definition.
Sect. 5.2 defines a specific constraint system called SETS, yielding the type system
HM(SETS). Sect. 5.3 extends HM(SETS) to the entire language λset, by assigning
types to its primitive operations. Sect. 5.4 states type safety results and discusses
several choices for our type system, which may be defined as either a unification-
or constraint-based system, and which is flexible with respect to the accuracy of
initial type bindings.

5.1 The System HM(X)

We adopt the definition of HM(X) given in [Skalka and Pottier 2002]. The frame-
work is parameterized by a constraint system X, i.e. by notions of types τ , con-
straints C, and interpretation of constraints in a model.

Given a constraint system, a type scheme is a triple of a set of quantifiers ᾱ,
a constraint C, and a type τ (which, in this paper, must be of kind Type; see
Sect. 5.2), written σ ::= ∀ᾱ[C].τ . A type environment Γ is a partial mapping of
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τ ::= α, β, . . . | τ → τ | {τ} | r : τ ; τ | ∂τ | c types
c ::= ⊥ | Pre | Abs | > presence constructors

C ::= true | C ∧ C | ∃α.C | τ = τ | τ ≤ τ constraints
| if c ≤ τ then τ ≤ τ (c 6= ⊥)

Fig. 7. SETS Grammar

α ∈ Vk
α : k

τ, τ ′ : Type

τ → τ ′ : Type

τ : Row∅

{τ} : Type

τ : Pres r 6∈ R
τ ′ : RowR∪{r}

(r : τ ; τ ′) : RowR

τ : Pres

∂τ : RowR c : Pres

` true

` C1 ` C2

` C1 ∧ C2

` C
` ∃α.C

τ, τ ′ : k

` τ = τ ′

` τ ≤ τ ′

τ, τ ′, τ ′′ : k k 6= Type

` if c ≤ τ then τ ′ ≤ τ ′′

Fig. 8. Kinding rules

program variables to type schemes. A judgement is a quadruple of a constraint C,
a type environment Γ, an expression e and a type scheme σ, written C,Γ ` e : σ,
derivable using the rules of Fig. 6. These rules correspond to those given in [Skalka
and Pottier 2002], less the rules relevant to stateful features, which are not needed
in this presentation. Note that via the hm-Const rule, populating ∆ with initial
bindings allows typing new language constants in particular instances of HM(X).
In the case of λset, c will range over the four primitive operators .r, ∨R, ∧R and ?r.

The following syntactic type safety theorem, in the style of [Wright and Felleisen
1994], is proven in [Skalka and Pottier 2002]. Significantly, the theorem holds with
respect to a call-by-value λ-calculus with let in any instance of HM(X), and the
theorem may be easily extended to incorporate additional constants by proving
soundness of initial bindings with respect to the semantics of functional constants,
the so-called δ-typability property.

Theorem 3. If C,∅ ` e : σ holds and C is satisfiable, then e does not go wrong.

We discuss δ-typability and type safety for λset more thoroughly in Sect. 5.4.

5.2 The Constraint System SETS

In order to give precise types to the primitive set operations in λset, we need specific
types and constraints. Together with their logical interpretation, which defines their
meaning, these form a constraint system called SETS.

The syntax of types and constraints is defined in Fig. 7. The type language
features four so-called presence constructors, two standard row constructors [Rémy
1992b], and a set type constructor {·}.

Presence types are used to record whether a resource r appears in a privilege set.
Pre means r is known to appear in the set, while Abs means r is known not to
appear in it. Of course, our analysis is sometimes approximate: > means that it is
not known whether r is a member of the set. Lastly, concerns of efficiency of type
inference call for a fourth presence constructor ⊥, which, roughly speaking, means
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



A Systematic Approach to Static Access Control · 15

that it is irrelevant whether r appears in the set, because the code that requires
this privilege test is unreachable. In addition to these four constants, a presence
type can also be a variable.

To describe the contents of a set, we use rows of presence types. A row is a
finite description of an infinite object, namely a (possibly partial) function from
resource names to presence types. More precisely, a row describes a function that
maps almost all resources in its domain (i.e. all but a finite number of them) to
the same type. Rows can be formed using two basic building blocks. First, the row
constructor ∂ allows forming constant rows: if τ is a presence type, then ∂τ is a row
that maps all resources in its domain to τ . Second, the row constructor (r : · ; ·)
allows adding an entry to an existing row: (r : τ1 ; τ2) is a row that maps r to the
presence type τ1 and otherwise behaves as the row τ2. Lastly, a row can also be a
variable. The original presentations of rows [Rémy 1992b; 1994] equip row types
with an equational theory, which, in particular, allows row entries to commute. In
our presentation, these equations are not axioms; they simply happen to hold in
our interpretation of types (given below).

A whole set is described by a row τ whose domain is R, wrapped within the set
type constructor, yielding a type of the form {τ}. To determine whether a particular
resource r appears in the set, one queries the row τ at r, yielding a presence type.
Such a query is carried out by unifying τ against (r : γ ; β), where γ and β are fresh
presence and row variables, respectively. For instance, the singleton set {r} is one
(and the only) value of type {r : Pre ; ∂Abs}. To determine whether a resource
s appears within that set, we solve the equation (r : Pre ; ∂Abs) = (s : γ ; β). If
r and s are distinct, this leads to γ = Abs and β = (r : Pre ; ∂Abs), the former
of which reflects the fact that s does not belong to {r}. This treatment of sets is
inspired by Wand and Rémy’s treatment of records: a set is, in fact, a degenerate
record where every field has unit type.

The constraint language offers standard equality and subtyping constraints, as
well as a simple form of conditional constraints. Their use will be illustrated in
Sect. 5.3 and 7.2.

To ensure that only meaningful types and constraints can be built, we immedi-
ately equip them with kinds, defined by:

k ::= Pres | RowR | Type

where R ranges over finite subsets of R. Kinds allow distinguishing presence types,
rows, and (regular) types. Furthermore, kinds keep track of every row’s domain: a
row of kind RowR represents a function of domain R\R. In particular, a complete
row, i.e. a total function from R to presence types, has kind Row∅. For every
kind k, we assume given a distinct, denumerable set of type variables Vk. We
use α, β, γ, . . . to represent type variables. From here on, we consider only well-
kinded types and constraints, as defined in Fig. 8. The purpose of these rules is to
guarantee that every constraint has a well-defined interpretation within our model,
whose definition follows.

To every kind k, we associate a mathematical structure JkK. JPresK is the set of
all four presence constructors. Given a finite set of resources R ⊆ R, JRowRK is the
set of total, almost constant functions from R \ R into JPresK. JTypeK is the free
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ρ ` true

ρ ` C1 ρ ` C2

ρ ` C1 ∧ C2

ρ = ρ′ [α] ρ′ ` C
ρ ` ∃α.C

ρ(τ) = ρ(τ ′)

ρ ` τ = τ ′
ρ(τ) ≤ ρ(τ ′)

ρ ` τ ≤ τ ′
τ, τ ′, τ ′′ : Pres c ≤ ρ(τ)⇒ ρ(τ ′) ≤ ρ(τ ′′)

ρ ` if c ≤ τ then τ ′ ≤ τ ′′

τ, τ ′, τ ′′ : RowR ∀r ∈ R \R c ≤ ρ(τ)(r)⇒ ρ(τ ′)(r) ≤ ρ(τ ′′)(r)

ρ ` if c ≤ τ then τ ′ ≤ τ ′′

Fig. 9. Interpretation of constraints

algebra generated by the constructors→, with signature JTypeK×JTypeK→ JTypeK,
and {·}, with signature JRow∅K→ JTypeK.

Each of these structures is then equipped with an ordering. Here, a choice has
to be made. If we do not wish to allow subtyping, we merely define the ordering
on every JkK as equality. Otherwise, we proceed as follows. First, a lattice over
JPresK is defined, whose least (resp. greatest) element is ⊥ (resp. >), and where
Abs and Pre are incomparable. This ordering is then extended, point-wise and
covariantly, to every JRowRK. Finally, it is extended inductively to JTypeK by
viewing the constructor {·} as covariant, and the constructor → as contravariant
(resp. covariant) in its first (resp. second) argument. This gives rise to a so-called
structural, atomic subtyping relation: that is, two related types may differ only in
their presence annotations.

We may now give the interpretation of types and constraints within the model. It
is parameterized by a kind-preserving assignment ρ, i.e. a function which, for every
kind k, maps Vk into JkK. The interpretation of types is obtained by extending ρ
so as to map every type of kind k to an element of JkK, as follows:

ρ(τ → τ ′) = ρ(τ)→ ρ(τ ′) ρ({τ}) = {ρ(τ)}
ρ(r : τ ; τ ′)(r) = ρ(τ) ρ(r : τ ; τ ′)(r′) = ρ(τ ′)(r′) (r 6= r′)

ρ(∂τ)(r) = ρ(τ) ρ(c) = c

Notice how the interpretation of the two row constructors reflects the informal ex-
planation given above, and validates the expected equational theory. Fig. 9 defines
the constraint satisfaction predicate · ` ·, whose arguments are an assignment ρ
and a constraint C. (The notation ρ = ρ′ [α] means that ρ and ρ′ coincide except
possibly on α.) This definition is standard. The last rule specifies that a condi-
tional constraint whose components are rows is to be interpreted point-wise, that
is, as an (infinite) conjunction of conditional constraints bearing on presence types.
Entailment is then defined as usual: C 
 C ′ (read: C entails C ′) holds iff, for every
assignment ρ, ρ ` C implies ρ ` C ′.

We refer to the type and constraint logic, together with its interpretation, as
SETS. More precisely, we have defined two logics, where ≤ is interpreted as either
equality or as a non-trivial subtype ordering. We will refer to them as SETS= and
SETS≤, respectively.
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5.3 Dealing with the Primitive Operations in λset

The typing rules of HM(X) cover only the λ-calculus with let. To extend HM(SETS)
to the whole language λset, we must assign types to its primitive operations. Let
us define an initial type environment ∆1 as follows:

R : {R : Pre ; ∂Abs}
.r : ∀β.{r : Pre ; β} → {r : Pre ; β}
∨R : ∀βγ̄.{R : γ̄ ; β} → {R : Pre ; β}
∧R : ∀βγ̄.{R : γ̄ ; β} → {R : γ̄ ; ∂Abs}
?r : ∀αβγ.{r : γ ; β} → ({r : Pre ; β} → α)→ ({r : Abs ; β} → α)→ α

We let α, β, γ range over type variables of kind Type, Row?, Pres, respectively. In
this definition and from here on, p and R range over finite sets of resources only.
We exploit this restriction to define the following concise notation, which is used
above: if R is {r1, . . . , rn}, then R : c stands for r1 : c ; . . . ; rn : c, and R : γ̄ stands
for r1 : γ1 ; . . . ; rn : γn. We note that it is possible to deal with cofinite sets of
resources as well, by writing R̄ for R \R and by employing the following bindings
when R is cofinite:

R : {R̄ : Abs ; ∂Pre}
∨R : ∀βγ̄.{R̄ : γ̄ ; β} → {R̄ : γ̄ ; ∂Pre}
∧R : ∀βγ̄.{R̄ : γ̄ ; β} → {R̄ : Abs ; β}

Cofinite sets of resources allow modeling principals that enjoy all privileges but a
finite number. For the sake of simplicity and brevity, we deal with finite sets of
resources only in the following, although, in practice, dealing with both finite and
cofinite sets does not raise any additional difficulty.

We may also use conditional constraints to assign a more flexible type scheme to
?r. Let ∆2 be the initial type environment obtained by replacing the last binding
in ∆1 with:

?r : ∀ᾱβ̄γ[C].{r : γ ; β} → ({r : Pre ; β1} → α1)→ ({r : Abs ; β2} → α2)→ α

where C = (if Pre ≤ γ then β ≤ β1) ∧ (if Abs ≤ γ then β ≤ β2)
∧ (if Pre ≤ γ then α1 ≤ α) ∧ (if Abs ≤ γ then α2 ≤ α)

Here, the input and output of each branch (represented by βi and αi, respectively)
are linked to the input and output of the whole construct (represented by β and α)
through conditional constraints. Intuitively, this means that the security require-
ments and the return type of a branch may be entirely ignored unless the branch
seems liable to be taken. (For more background on conditional constraints, the
reader is referred to [Aiken et al. 1994; Pottier 2000].)

5.4 The Type Systems Srel
i

Sect. 5.2 describes two constraint systems, SETS= and SETS≤. Sect. 5.3 defines
two initial typing environments, ∆1 and ∆2. These choices give rise to four related
type systems, which we refer to as Srel

i , where rel and i range over {=,≤} and
{1, 2}, respectively. Each of them offers a different compromise between accuracy,
readability and cost of analysis. In each case, Theorem 3 may be extended to the
entire language λset by proving a simple δ-typability [Wright and Felleisen 1994]
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lemma, i.e. by checking that ∆i correctly describes the behavior of the primitive
operations. This is the subject of the next section.

Despite sharing a common formalism, these systems may call for vastly different
implementations. Indeed, every instance of HM(X) must come with a constraint
solving algorithm. S=

1 is a simple extension of the Hindley-Milner type system
with rows, and its constraint solver is row unification [Rémy 1992a]. S=

2 is sim-
ilar, but requires conditional (i.e. delayed) unification constraints. S≤1 and S≤2
require solving (structural) subtyping constraints, usually leading to more complex
implementations based on transitive closure computations and on-the-fly constraint
simplifications, see e.g. [Simonet 2003]. A worst-case time bound for solving pos-
sibly conditional subtyping constraints in the presence of rows is given in [Pottier
2003]: it is cubic in the size of the program and close to linear in the number of
resources that appear in the program, either individually or as part of a principal
p. In practice, for all four systems, it is possible to design a constraint solver that
scales well.

One should also point out that, when the programming language is extended with
a mechanism for declaring the type of an expression (or, in Java, of a method), it is
necessary to be able to check that the type inferred by the analysis for this expres-
sion matches the declaration. This requires an algorithm for deciding constraint
entailment. In the setting of unification and of structural subtyping, such algo-
rithms exist and are efficient. In the presence of conditional constraints, however,
entailment becomes a hard problem [Su and Aiken 2001], making the use of such
constraints problematic.

5.5 Proof of δ-typability for λset

Let us first state some basic properties of sets and set types, whose proofs are
omitted.

Lemma 4. Let v be a closed value. If C,Γ ` v : {τ} holds in Srel
i , then v is a

set R and C 
 (R : Pre ; ∂Abs) ≤ τ .

Lemma 5. If C,Γ ` R : {R′ : Pre ; τ} holds in Srel
i , then R′ ⊆ R.

Lemma 6. If C,Γ ` R : {R′ : τ̄ ; τ} holds in Srel
i , then so do C,Γ ` R ∪ R′ :

{R′ : Pre ; τ} and C,Γ ` R ∩R′ : {R′ : τ̄ ; ∂Abs}.

As mentioned in Sect. 5.1, extending Theorem 3 to all of λset only requires proving
soundness of the initial bindings for the primitive operators. Let δ(c, v) = v′ if and
only if c v → v′. We state the so-called δ-typability property in the style of [Skalka
and Pottier 2002]:

Lemma 7. In every Srel
i , for every constant c and closed value v, if C,Γ ` c :

τ1 → τ2 and C,Γ ` v : τ1 hold, then δ(c, v) is defined and C,Γ ` δ(c, v) : τ2 holds.

Proof. Suppose C,Γ ` c : τ1 → τ2 and C,Γ ` v : τ1. We consider two cases:
first, the case where C,Γ ` c : τ1 → τ2 is obtained via hm-∀ Elim and hm-Sub;
second, the case where it is obtained via hm-∀ Elim alone. According to the
normalization result proved in [Skalka and Pottier 2002], this is enough.

In the first case, hm-Sub’s premises are of the form C,Γ ` c : τ ′1 → τ ′2 (1) and
C 
 τ ′1 → τ ′2 ≤ τ1 → τ2 (2). By properties of ≤, (2) implies C 
 τ1 ≤ τ ′1 (3)
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



A Systematic Approach to Static Access Control · 19

and C 
 τ ′2 ≤ τ2 (4). By assumption and hm-Sub, (3) implies C,Γ ` v : τ ′1 (5).
According to the next case of the proof, (1) and (5) imply that δ(c, v) is defined
and C,Γ ` δ(c, v) : τ ′2 (6) holds. The result follows from (4) and (6) by hm-Sub.

Let us now consider the second case. ∆i(c) is a type scheme of the form
∀ᾱ[D].τ ′1 → τ ′2. Because the derivation of C,Γ ` c : τ1 → τ2 consists of a sin-
gle instance of hm-∀ Elim, we have τ1 = ϕ(τ ′1) and τ2 = ϕ(τ ′2), where ϕ is a
substitution of domain ᾱ and C 
 ϕ(D). We now proceed by case analysis on c
and i:

Case c = .r. In this case τ1 = τ2 = {r : Pre ; ϕβ}. By Lemma 4, v is a
set R. By Lemma 5, we further obtain {r} ⊆ R, hence δ(.r, v) = v. The result
C,Γ ` δ(c, v) : τ2 follows.

Case c = ∨R. In this case τ1 = {R : ϕγ̄ ; ϕβ} and τ2 = {R : Pre ; ϕβ}.
By Lemma 4, v is a set R′, and δ(∨R, R′) = R ∪ R′. Then, Lemma 6 yields
C,Γ ` δ(c, v) : τ2.

Case c = ∧R. In this case τ1 = {R : ϕγ̄ ; ϕβ} and τ2 = {R : ϕγ̄ ; ∂Abs}.
By Lemma 4, v is a set R′, and δ(∧R, R′) = R ∩ R′. Then, Lemma 6 yields
C,Γ ` δ(c, v) : τ2.

Case c = ?r and i = 1. In this case τ1 = {r : ϕγ ; ϕβ} and τ2 = ({r :
Pre ; ϕβ} → ϕα)→ ({r : Abs ; ϕβ} → ϕα)→ ϕα. By Lemma 4, v is a set R, so
δ(?r, v) is defined. Let us assume r ∈ R (the other case is analogous). Then, δ(?r, v)
is λx.λy.(xR). By Lemma 4, we have C 
 (R : Pre ; ∂Abs) ≤ (r : ϕγ ; ϕβ).
This implies C 
 (R : Pre ; ∂Abs) ≤ (r : Pre ; ϕβ) (we have simply made the
two rows agree at r). Because C,Γ ` R : {R : Pre ; ∂Abs} holds, hm-Sub yields
C,Γ ` R : {r : Pre ; ϕβ}. From this fact, it is easy to derive C,Γ ` λx.λy.(xR) : τ2.

Case c = ?r and i = 2. In this case τ1 = {r : ϕγ ; ϕβ} and τ2 = ({r :
Pre ; ϕβ1} → ϕα1) → ({r : Abs ; ϕβ2} → ϕα2) → ϕα. By Lemma 4, v is a
set R, so δ(?r, v) is defined. Let us assume r ∈ R (the other case is analogous).
Then, δ(?r, v) is λx.λy.(xR). By Lemma 4, we have C 
 (R : Pre ; ∂Abs) ≤ (r :
ϕγ ; ϕβ). This implies, in particular, Pre ≤ ϕγ (we have simply looked up the two
rows at r). Because C 
 ϕ(D), and by definition of the satisfaction of conditional
constraints, we must then have C 
 ϕβ ≤ ϕβ1 and C 
 ϕα1 ≤ ϕα. Furthermore,
as in the previous case, we have C,Γ ` R : {r : Pre ; ϕβ}. From these facts, it is
easy to derive C,Γ ` λx.λy.(xR) : τ2.

6. TYPES FOR λsec

6.1 Indirect Type Systems

Sect. 5 defined a type system, Srel
i , for λset. Sect. 4 defined a translation of λsec

into λset. Composing the two automatically gives rise to a type system for λsec,
also called Srel

i for simplicity, whose safety is a direct consequence of Theorems 2
and 3.

Definition 1. Let e be a λsec expression. By definition, C,Γ ` e : σ holds if
and only if C,Γ ` L e M : σ holds.

Theorem 4. If C,∅ ` e : σ holds and C is satisfiable, then e does not go wrong.

Turning type safety into a trivial corollary was the main motivation for bas-
ing our approach on a translation. Indeed, because Theorem 2 concerns untyped
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Var

Γ(x) = σ

p, ς,Γ ` x : σ

Abs

?, ς2, (Γ; z : τ1
ς2−→ τ2;x : τ1) ` f : τ2

p, ς1,Γ ` fix z.λx.f : τ1
ς2−→ τ2

App

p, ς,Γ ` e1 : τ2
ς−→ τ p, ς,Γ ` e2 : τ2

p, ς,Γ ` e1 e2 : τ

Let

p, ς,Γ ` e1 : σ p, ς, (Γ;x : σ) ` e2 : τ

p, ς,Γ ` letx = e1 in e2 : τ

∀ Intro

p, ς,Γ ` e : τ ᾱ ∩ fv(ς,Γ) = ∅

p, ς,Γ ` e : ∀ᾱ.τ

∀ Elim

p, ς,Γ ` e : ∀ᾱ.τ
p, ς,Γ ` e : [τ̄/ᾱ]τ

Enable Failure

p, {ρ},Γ ` e : τ r 6∈ p
p, {ρ},Γ ` enable r in e : τ

Enable Success

p, {r : Pre ; ρ},Γ ` e : τ r ∈ p
p, {r : ϕ ; ρ},Γ ` enable r in e : τ

Check

p, {r : Pre ; ρ},Γ ` e : τ

p, {r : Pre ; ρ},Γ ` check r then e : τ

Test

p, {r : Pre ; ρ},Γ ` e1 : τ p, {r : Abs ; ρ},Γ ` e2 : τ

p, {r : ϕ ; ρ},Γ ` test r then e1 else e2 : τ

Sign

p, {p : ϕ̄ ; ∂Abs},Γ ` e : τ

?, {p : ϕ̄ ; ρ},Γ ` p.e : τ

Fig. 10. Typing rules for λsec derived from S=
1

terms, its proof is straightforward. (The δ-typability lemma established in Sect. 5.3
does involve types, but is very straightforward.) A direct type safety proof would
duplicate most of the steps involved in proving HM(X) correct.

Although the above theorem only mentions type safety, it is possible to also
establish a subject reduction result for λsec. Indeed, according to Lemma 2, subject
reduction for λsec follows directly from subject reduction for λset and from the fact
that administrative expansion ∼← preserves types, which is easy to check.

6.2 Reformulation: Direct Type Systems

Definition 1, although simple, is not a direct definition of typing for λsec. But a
direct type system is desirable, for several reasons. First, given a direct type system,
it becomes unnecessary to actually translate expressions down to λset. Also, with
a direct type system, more succinct and intuitive type and judgement forms can be
adopted. Finally, understandable type error reporting is much more feasible in a
direct type system. Therefore, we define rules which allow typing λsec expressions
without explicitly translating them into λset. These so-called direct or derived
rules can be obtained in a rather systematic way from the definition of Srel

i and the
definition of the translation, making the direct type safety proof straightforward,
by appeal to the pre-existing result in λset and Theorem 2.

In these rules, the symbols τ and ς range over types of kind Type; more specifi-
cally, ς is used to represent some security context, i.e. a set of available resources.
The symbols ρ and ϕ range over types of kind Row? and Pres, respectively. The
? symbol in the rules stands for an arbitrary principal. In the source-to-target
translation, all functions are given an additional parameter, yielding types of the
form τ1 → ς → τ2. To recover the more familiar and appealing notation proposed
in [Skalka and Smith 2000], we define the macro τ1

ς−→ τ2 =def τ1 → ς → τ2.
Fig. 10 gives derived rules for S=

1 , the simplest of our type systems. There, all
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constraints are equations. As a result, all type information can be represented in
term form, rather than in constraint form [Sulzmann et al. 1999], provided types
are identified modulo the (standard) equational theory for rows. We exploit this
fact to give a simple presentation of the derived rules. Type schemes have the form
∀ᾱ.τ , and judgements have the form p, ς,Γ ` e : σ. Although rule Enable Failure

naturally arises through the translation, it may be desirable, in practice, to remove
it. Thus, any attempt to enable a privilege by a principal who does not own it
would result in an immediate static type error.

Var

Γ(x) = σ C 
 σ

p, ς, C,Γ ` x : σ

Sub

p, ς, C,Γ ` e : τ C 
 τ ≤ τ ′

p, ς, C,Γ ` e : τ ′

Abs

?, ς2, C, (Γ; z : τ1
ς2−→ τ2;x : τ1) ` f : τ2

p, ς1, C,Γ ` fix z.λx.f : τ1
ς2−→ τ2

App

p, ς, C,Γ ` e1 : τ2
ς−→ τ p, ς, C,Γ ` e2 : τ2

p, ς, C,Γ ` e1 e2 : τ

Let

p, ς, C,Γ ` e1 : σ p, ς, C, (Γ;x : σ) ` e2 : τ

p, ς, C,Γ ` letx = e1 in e2 : τ

∀ Intro

p, ς, C ∧D,Γ ` e : τ ᾱ ∩ fv(ς, C,Γ) = ∅

p, ς, C ∧ ∃ᾱ.D,Γ ` e : ∀ᾱ[D].τ

∀ Elim

p, ς, C,Γ ` e : ∀ᾱ[D].τ C 
 [τ̄/ᾱ]D

p, ς, C,Γ ` e : [τ̄/ᾱ]τ

Enable Failure

p, {ρ}, C,Γ ` e : τ r 6∈ p
p, {ρ}, C,Γ ` enable r in e : τ

Enable Success

p, {r : Pre ; ρ}, C,Γ ` e : τ r ∈ p
p, {r : ϕ ; ρ}, C,Γ ` enable r in e : τ

Check

p, {r : Pre ; ρ}, C,Γ ` e : τ

p, {r : Pre ; ρ}, C,Γ ` check r then e : τ

Test

p, {r : Pre ; ρ1}, C,Γ ` e1 : τ1
p, {r : Abs ; ρ2}, C,Γ ` e2 : τ2 C 
 if Pre ≤ ϕ then ρ ≤ ρ1

C 
 if Abs ≤ ϕ then ρ ≤ ρ2 C 
 if Pre ≤ ϕ then τ1 ≤ τ C 
 if Abs ≤ ϕ then τ2 ≤ τ
p, {r : ϕ ; ρ}, C,Γ ` test r then e1 else e2 : τ

Sign

p, {p : ϕ̄ ; ∂Abs}, C,Γ ` e : τ

?, {p : ϕ̄ ; ρ}, C,Γ ` p.e : τ

Fig. 11. Typing rules for λsec derived from S≤2

Figure 11 gives rules for the system derived from S≤2 , the most complex element
in our array of type systems. Judgements have the form p, ς, C,Γ ` e : σ. The most
significant differences are the accuracy of the Test rule, reflecting the more precise
binding for ?r in ∆2, and the addition of subtyping constraints.

Because the system presented in Fig. 10 is based on unification, it is efficient,
easy to implement, and yields readable types. Also, we conjecture that, thanks to
the power of row polymorphism, it is flexible enough for many practical uses (see
Sect. 7). Therefore, we will focus on this system in the rest of this paper. We prove
that this system is correct in Section 6.3.
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6.3 Direct Type Correctness

In this section we prove the correctness of the type system derived from S=
1 , that

is, we prove Lemma 11. We begin by proving soundness of the derived system with
respect to S=

1 .

Lemma 8. p, ς,Γ ` e : σ implies true, (Γ; s : ς) ` JeKp : σ.

Proof. By structural induction on the derivation of p, ς,Γ ` e : σ. Let Γ′ stand
for (Γ; s : ς).

Case Var. In this case e is a variable x. Because s is a distinguished variable, we
have x 6= s, so Γ(x) and Γ′(x) coincide. Furthermore, JxKp is x. The result follows
by hm-Var.

Case Abs. In this case e is fix z.λx.f , σ is τ1
ς′−→ τ2 and p′, ς ′, (Γ; z : σ;x : τ1) ` f :

τ2 is derivable. By the induction hypothesis, true, (Γ; z : σ;x : τ1; s : ς ′) ` JfKp′ : τ2
is derivable. This judgement can also be written true, (Γ′; z : σ;x : τ1; s : ς ′) ` JfK :
τ2. Thus true,Γ′ ` fix z.λx.λs.JfK : τ1 → ς ′ → τ2 is derivable by two applications
of hm-Abs. Given the definition of JeKp in this case, this was the goal.

Case App. In this case e = e1 e2, σ = τ and p, ς,Γ ` e1 : τ2
ς−→ τ and p, ς,Γ `

e2 : τ2 are derivable. By the induction hypothesis, true,Γ′ ` Je1Kp : τ2 → ς → τ
and true,Γ′ ` Je2Kp : τ2 are derivable. Furthermore, true,Γ′ ` s : ς holds by
hm-Var. Hence true,Γ′ ` Je1Kp Je2Kp s : τ2 is derivable by two applications of
hm-App. Given the definition of JeKp in this case, this was the goal.

Case Let. In this case e = letx = e1 in e2, and p, ς,Γ ` e1 : σ′ and p, ς, (Γ;x :
σ′) ` e2 : σ are derivable. By the induction hypothesis, true,Γ′ ` Je1Kp : σ′ and
true, (Γ′;x : σ′) ` Je2Kp : σ hold. The result follows by hm-Let and by definition
of JeKp in this case.

Case ∀ Intro. In this case σ = ∀ᾱ[true].τ where ᾱ ∩ fv(ς,Γ) = ∅ and p, ς,Γ `
e : τ is derivable. By the induction hypothesis, true,Γ′ ` JeKp : τ is derivable.
Furthermore, we have ᾱ ∩ fv(true,Γ′) = ∅. Thus, by hm-∀ Intro, true,Γ′ `
JeKp : σ is derivable. We have implicitly used the equivalences true ≡ true ∧ true
and true ≡ ∃ᾱ.true.

Case ∀ Elim. In this case σ = [τ̄ /ᾱ]τ and p, ς,Γ ` e : ∀ᾱ[true].τ is derivable. By
the induction hypothesis, true,Γ′ ` JeKp : ∀ᾱ[true].τ is derivable. Furthermore,
[τ̄ /ᾱ]true is true, so the result follows by hm-∀ Elim.

Case Enable Failure. In this case e = enable r in e′ where r 6∈ p so that {r}∩p =
∅, ς = {ρ}, σ = τ and p, ς,Γ ` e′ : τ is derivable. Now, by definition of ∆1,
by hm-Const and hm-∀ Elim, true,Γ′ ` ∨∅ : ς → ς is derivable. Furthermore,
true,Γ′ ` s : ς follows from hm-Var. Therefore, hm-App yields true,Γ′ ` s∨∅ : ς.
The induction hypothesis yields true,Γ′ ` Je′Kp : τ , so also true, (Γ′; s : ς) ` Je′Kp :
τ . The result follows by hm-Let and the definition of JeKp in this case.

Case Enable Success. In this case e = enable r in e′ where r ∈ p so that
{r}∩ p = {r}, ς = {r : ϕ; ρ}, σ = τ and p, {r : Pre; ρ} ,Γ ` e′ : τ is derivable. Now,
by definition of ∆1, by hm-Const and hm-∀ Elim, true,Γ′ ` ∨{r} : {r : ϕ; ρ} →
{r : Pre; ρ} is derivable. Furthermore, true,Γ′ ` s : ς follows from hm-Var.
Therefore, hm-App yields true,Γ′ ` s∨{r} : {r : Pre; ρ}. The induction hypothesis
yields true, (Γ; s : {r : Pre; ρ}) ` Je′Kp : τ , so also true, (Γ′; s : {r : Pre; ρ}) `
Je′Kp : τ . The result follows by hm-Let and the definition of JeKp in this case.
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Case Check. In this case e = check r then e′ and σ = τ , ς = {r : Pre; ρ} and
p, ς,Γ ` e′ : τ is derivable. Now, by definition of ∆1, by hm-Const, hm-∀ Elim,
hm-Var and hm-App, true,Γ′ ` s.r : ς is derivable. By the induction hypothesis,
true,Γ′ ` Je′Kp : τ is derivable, so also true, (Γ′; : ς) ` Je′Kp : τ , if is a variable
that does not appear free in e′. The result follows by hm-Let and the definition of
JeKp in this case.

Case Test. In this case e = test r then e1 else e2 and σ = τ , ς = {r : ϕ ; ρ}
and p, {r : Pre ; ρ},Γ ` e1 : τ and p, {r : Abs ; ρ},Γ ` e2 : τ are derivable.
By the induction hypothesis, we have true, (Γ; s : {r : Pre ; ρ}) ` Je1Kp : τ . By
hm-Abs, this implies true,Γ ` λs.Je1Kp : {r : Pre ; ρ} → τ . By weakening, we
also have true,Γ′ ` λs.Je1Kp : {r : Pre ; ρ} → τ . Similarly, true,Γ′ ` λs.Je2Kp :
{r : Abs ; ρ} → τ holds. The result follows by definition of ∆1, by hm-Const,
hm-∀ Elim, hm-Var, hm-App and by definition of JeKp in this case.

Case Sign. In this case e = p′.e′, ς = {p′ : ϕ̄ ; ρ}, σ = τ and p′, ς ′,Γ ` e′ : τ is
derivable, where ς ′ = {p′ : ϕ̄ ; ∂Abs}. By the induction hypothesis, true, (Γ; s :
ς ′) ` Je′Kp′ : τ holds, so also true, (Γ′; s : ς ′) ` Je′Kp′ : τ . Now, by definition of ∆1,
by hm-Const, hm-∀ Elim, hm-Var and hm-App, true,Γ′ ` s∧ p′ : ς ′ holds. The
result follows by hm-Let and the definition of JeKp in this case.

Our next task is to prove completeness of the derived type system with respect to
S=

1 . We begin with a normalization result analogous to the one proved in [Skalka
and Pottier 2002].

Lemma 9. If C,Γ ` e : τ holds then it may be derived via an instance of Sub

from a judgement C,Γ ` e : τ ′, which itself follows from an instance of a syntax-
directed rule and at most one instance of ∀ Elim.

We may now proceed to demonstrate completeness. In this lemma, we abbreviate
type schemes ∀ᾱ[true].τ as ∀ᾱ.τ and judgements true,Γ ` e : σ as Γ ` e : σ,
omitting the trivial requirement true 
 true from instances of ∀ Elim and Var.

Lemma 10. (Γ; s : ς) ` JeKp : τ implies p, ς,Γ ` e : τ .

Proof. In this proof, we will write τ = τ ′ for true 
 τ = τ ′, which amounts
to identifying types modulo the equational theory on rows and allows us to ignore
instances of hm-Sub in the derivation d of (Γ; s : ς) ` JeKp : τ . By Lemma 9, we
may assume that d ends with a syntax-directed rule and at most one instance of
∀ Elim. The proof proceeds by induction on the structure of e and analysis of the
derivation d. Let Γ′ = (Γ; s : ς).

Case e = JeKp = x. By assumption, we have x 6= s. The derivation d must
involve hm-Var possibly followed by hm-∀ Elim. As a result, τ must be of the form
[τ̄ /ᾱ]τ ′, where Γ(x) = ∀ᾱ.τ ′. By Var and ∀ Elim, this implies p, ς,Γ ` x : [τ̄ /ᾱ]τ ′.
Therefore, this case holds.

Case e = fix z.λx.f and JeKp = fix z.λx.λs.JfKp. By Lemma 9, we may assume
that d ends with two instances of hm-Abs, as follows.

Γ′; z : τ1 → ς ′ → τ2;x : τ1; s : ς ′ ` JfKp : τ2
Γ′; z : τ1 → ς ′ → τ2;x : τ1 ` λs.JfKp : ς ′ → τ2

Γ′ ` fix z.λx.λs.JfKp : τ1 → ς ′ → τ2
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Here, τ is τ1 → ς ′ → τ2. Now, we have:

(Γ′; z : τ1 → ς ′ → τ2;x : τ1; s : ς ′) = (Γ; z : τ1 → ς ′ → τ2;x : τ1; s : ς ′)

This allows applying the induction hypothesis, yielding p, ς ′, (Γ; z : τ1 → ς ′ → τ2;x :
τ1) ` f : τ2 . By Abs, this implies p, ς,Γ ` fix z.λx.f : τ1 → ς ′ → τ2.

Case e = e1e2 and JeKp = Je1KpJe2Kps. By Lemma 9, we may assume that d ends
with two instances of hm-App, as follows.

Γ′ ` Je1Kp : τ ′ → ς → τ Γ′ ` Je2Kp : τ ′

Γ′ ` Je1KpJe2Kp : ς → τ

Γ′(s) = ς

Γ′ ` s : ς
Γ′ ` Je1KpJe2Kps : τ

By the induction hypothesis, we have p, ς,Γ ` e1 : τ ′ → ς → τ and p, ς,Γ ` e2 : τ ′.
The judgement p, ς,Γ ` e1e2 : τ follows by App.

Case e = letx = e1 in e2 and JeKp = letx = Je1Kp in Je2Kp. Then, d ends with an
instance of hm-Let:

Γ′ ` Je1Kp : ∀ᾱ[D].τ ′ (Γ; s : ς;x : ∀ᾱ[D].τ ′) ` Je2Kp : τ
Γ′ ` letx = Je1Kp in Je2Kp : τ

Here, we have ∃ᾱ.D ≡ true, which implies that the constraint D—a system of
equations—admits a most general unifier. In that case, the type scheme ∀ᾱ[D].τ ′

can be shown equivalent to an unconstrained type scheme, so we may assume,
without loss of generality, that D is in fact true. We may further assume, without
loss of generality, that the left-hand premise is an instance of hm-∀ Intro:

Γ′ ` Je1Kp : τ ′ ᾱ ∩ fv(Γ′) = ∅

Γ′ ` Je1Kp : ∀ᾱ.τ ′

The induction hypothesis yields p, ς,Γ ` e1 : τ ′. We have ᾱ ∩ fv(ς,Γ) = ∅, so, by
∀ Intro, we obtain p, ς,Γ ` e1 : ∀ᾱ.τ ′. Since x 6= s, we have (Γ; s : ς;x : ∀ᾱ.τ ′) =
(Γ;x : ∀ᾱ.τ ′; s : ς), therefore the induction hypothesis yields p, ς, (Γ;x : ∀ᾱ.τ ′) `
e2 : τ . The result follows by Let.

Case e = enable r in e′ and JeKp = let s = s ∨ ({r} ∩ p) in Je′Kp. By Lemma 9 and
definition of ∆1, the derivation d must be of the following form, where R = {r}∩p,
ς = {R : ϕ̄ ; ρ} and ς ′ = {R : Pre ; ρ}:

Γ′ ` ∨R : ς → ς ′ Γ′ ` s : ς
Γ′ ` s ∨R : ς ′ ᾱ ∩ fv(Γ′) = ∅

Γ′ ` s ∨R : ∀ᾱ.ς ′ Γ′; s : ∀ᾱ.ς ′ ` Je′Kp : τ
Γ′ ` let s = s ∨R in Je′Kp : τ

Since ς appears in Γ′, the free type variables of ρ are free in Γ′ as well, so the free
type variables of ς ′ are free in Γ′. As a result, the type scheme ∀ᾱ.ς ′ is equivalent to
the monotype ς ′. We will thus assume, without loss of generality, that ᾱ is empty.
Since (Γ′; s : ς ′) = (Γ; s : ς ′), the induction hypothesis yields p, ς ′,Γ ` e′ : τ . As
a result, p, ς,Γ ` enable r in e′ : τ is derivable by Enable Failure if r 6∈ p and by
Enable Success if r ∈ p.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



A Systematic Approach to Static Access Control · 25

Case e = check r then e′ and JeKp = let = s.r in Je′Kp. By Lemma 9 and definition
of ∆1, the derivation d must be of the following form, where ς = {r : Pre ; ρ}:

Γ′ ` .r : ς → ς Γ′ ` s : ς
Γ′ ` s.r : ς ᾱ ∩ fv(Γ′) = ∅

Γ′ ` s.r : ∀ᾱ.ς Γ′; : ∀ᾱ.ς ` Je′Kp : τ
Γ′ ` let = s.r in Je′Kp :

Since does not occur in e′, by weakening, we have Γ′ ` Je′Kp : τ . As a result,
the induction hypothesis yields p, ς,Γ ` e′ : τ . Thus, p, ς,Γ ` check r then e′ : τ is
derivable by Check.

Case e = test r then e1 else e2 and JeKp = s?r (λs.Je1Kp) (λs.Je2Kp). By Lemma 9
and definition of ∆1, d must be of the following form, where ς = {r : ϕ ; ρ}:

Γ′ ` ?r : {r : ϕ ; ρ} → ({r : Pre ; ρ} → τ)→ ({r : Abs ; ρ} → τ)→ τ
Γ′ ` s : {r : ϕ ; ρ}

Γ′ ` s?r : ({r : Pre ; ρ} → τ)→ ({r : Abs ; ρ} → τ)→ τ (1)

Γ′; s : {r : Pre ; ρ} ` Je1Kp : τ
Γ′ ` λs.Je1Kp : {r : Pre ; ρ} → τ (2)

Γ′; s : {r : Abs ; ρ} ` Je2Kp : τ
Γ′ ` λs.Je2Kp : {r : Abs ; ρ} → τ (3)

(1) (2)
Γ′ ` s?r (λs.Je1Kp) : ({r : Abs ; ρ} → τ)→ τ (3)

Γ′ ` s?r (λs.Je1Kp) (λs.Je2Kp) : τ

By the induction hypothesis, p, {r : Pre ; ρ},Γ ` e1 : τ and p, {r : Abs ; ρ},Γ `
e2 : τ hold. The judgement p, {r : ϕ ; ρ},Γ ` test r then e1 else e2 : τ follows by
Test.

Case e = p′.e′ and JeKp = let s = s ∧ p′ in Je′Kp′ . By Lemma 9 and definition of
∆1, the derivation d must be of the following form, where ς = {p′ : ϕ̄ ; ρ} and
ς ′ = {p′ : ϕ̄ ; ∂Abs}:

Γ′ ` ∧p′ : ς → ς ′ Γ′ ` s : ς
Γ′ ` s ∧ p′ : ς ′ ᾱ ∩ fv(Γ′) = ∅

Γ′ ` s ∧ p′ : ∀ᾱ.ς ′ Γ′; s : ∀ᾱ.ς ′ ` Je′Kp′ : τ
Γ′ ` let s = s ∧ p′ in Je′Kp′ : τ

Since ς appears in Γ′, the free type variables of ϕ̄ are free in Γ′ as well, so the free
type variables of ς ′ are free in Γ′. As a result, the type scheme ∀ᾱ.ς ′ is equivalent to
the monotype ς ′. We will thus assume, without loss of generality, that ᾱ is empty.
Since (Γ′; s : ς ′) = (Γ; s : ς ′), the induction hypothesis yields p′, ς ′,Γ ` e′ : τ . As a
result, p, ς,Γ ` p′.e′ : τ is derivable by Sign.

We are now ready to demonstrate correctness of the derived type system.

Lemma 11. nobody, {δAbs} ,∅ ` e : τ holds for some τ if and only if C,∅ `
L e M : τ holds for some satisfiable C and for some τ .

Proof. Suppose on the one hand that nobody, {δAbs} ,∅ ` e : τ holds. By
Lemma 8 we have true, s : {∂Abs} ` JeKnobody : τ . Now, by definition of ∆1 and
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by Const, we have true,∅ ` ∅ : {∂Abs}. By the substitution lemma for HM(X),
which is proved in [Skalka and Pottier 2002], this leads to true,∅ ` JeKnobody[∅/s] :
τ . Because true is satisfiable and because JeKnobody[∅/s] is L e M, this yields the goal.

Suppose on the other hand that C,∅ ` L e M : τ holds, where C is satisfiable.
Because C is satisfiable, it admits a unifier ϕ, which has the property that the
constraint ϕ(C) is equivalent to true. Thus, by the substitution lemma, we have
that true,∅ ` L e M : ϕ(τ) holds. Now, as above, we have L e M = JeKnobody[∅/s]
and true,∅ ` ∅ : {∂Abs}. By a simple inverse substitution lemma, which we do
not explicitly establish here, this implies true, s : {∂Abs} ` JeKnobody : ϕ(τ). The
result follows by Lemma 10.

In other words, Lemma 11 states that a closed λsec program e is well-typed in
the derived type system under the initial principal nobody and the empty secu-
rity context {∂Abs} if and only if L e M is well-typed in the original type system.
Furthermore, by Theorem 4, such programs cannot go wrong.

7. EXAMPLES

In this section, we give examples which illustrate the expressivity (and limitations)
of our type system. These examples facilitate a discussion of the differences between
the variants of the system, yielding insights into the possible tradeoffs between
precision and cost.

7.1 Security Wrappers

A library writer often needs to surround numerous internal functions with “boiler-
plate” security code before making them accessible. To avoid redundancy, it seems
desirable to allow the definition of generic security wrappers. When applied to
a function, a wrapper returns a new function which has the same computational
meaning but different security requirements.

Assume given a principal p = {r, s}. Here are two wrappers likely to be of use to
this principal:

enabler = λf.p.λx.p.enable r in f x

requirer = λf.p.λx.p.check r then f x

In system S=
1 , these wrappers receive the following (most general) type schemes.

All of the type variables which appear in them are universally quantified, so we do
not give the quantifier prefix explicitly.

enabler : ∀ . . . .(α1
{r:Pre ; s:γ1 ; ∂Abs}−−−−−−−−−−−−−→ α2)

{β1}−−−→ (α1
{r:γ2 ; s:γ1 ; β2}−−−−−−−−−−→ α2)

requirer : ∀ . . . .(α1
{r:Pre ; s:γ1 ; ∂Abs}−−−−−−−−−−−−−→ α2)

{β1}−−−→ (α1
{r:Pre ; s:γ1 ; β2}−−−−−−−−−−−→ α2)

These types are very similar; they may be read as follows. Both wrappers expect a
function f which allows that r be enabled (r : Pre), i.e. one which either requires
r to be enabled, or doesn’t care about its status. (Indeed, as in ML, the type of the
actual argument may be more general than that of the formal.) They return a new
function with identical domain and codomain (α1, α2), which works regardless of
r’s status (enabler yields r : γ2) or requires r to be enabled (requirer yields r : Pre).
The new function retains f ’s expectations about s (s : γ1). f must not require any
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further privileges (∂Abs), because it is invoked by p, which enjoys privileges r and
s only.

These polymorphic types are very expressive. Our main concern is that, even
though the privilege s is not mentioned in the code of these wrappers, it does appear
in their type. More generally, every privilege available to p may show up in the type
of a function written on behalf of principal p, which may lead to very verbose types.
An appropriate type abbreviation mechanism may be able to address this problem;
this is left as a subject for future work.

7.2 Use and Types of Security tests

In this section, we discuss two typical programming idioms involving test. One
(arguably the most common) is very simple, and may be typed in S=

1 . The other is
more complex and requires at least S=

2 . We take this opportunity to discuss various
problems related to the interpretation of conditional constraints.

Imagine an operating system with two kinds of processes, root processes and
user processes. Killing a user process is always allowed, while killing a root process
requires the privilege k. At least one distinguished principal root has this privilege.
The system functions which perform the killing are implemented by root, as follows:

kill = λ(p : proc).root.check k then . . . – kill the process
killIfUser = λ(p : proc).root. . . . – kill the process if it is user-level

In system S=
1 , these functions receive the following (most general) types:

kill : ∀β.proc
{k:Pre ; β}−−−−−−−→ unit

killIfUser : ∀γβ.proc
{k:γ ; β}−−−−−→ unit

The first function can be called only if it can be statically proven that the privilege
k is enabled. The second one, on the other hand, can be called at any time, but
will never kill a root process. To complement these functions, it may be desirable
to define a function which provides a “best attempt” given the current (dynamic)
security context. This may be done by dynamically checking whether the privilege
is enabled, then calling the appropriate function:

tryKill = λ(p : proc).root.
test k then kill(p) else killIfUser(p)

This function is well-typed in system S=
1 . Indeed, within the first branch of the

test construct, it is statically known that the privilege k must be enabled; this is
why the sub-expression kill(p) is well-typed. The inferred type shows that tryKill
does not have any security requirements:

tryKill : ∀γβ.proc
{k:γ ; β}−−−−−→ unit

The sensitive action kill(p) is performed within the lexical scope of the test con-
struct, which is why it is easily seen to be safe. However, one can also move it
outside of the scope, as follows:

tryKill’ , λ(p : proc).root.
let action = test k then kill else killIfUser in action(p)
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Here, the dynamic security check yields a closure, whose behavior depends on the
check’s outcome. It can be passed on and used in further computations. Such a
programming idiom is useful in practice, because it allows hoisting a security check
out of a loop. For instance, if we were to kill a set of processes, instead of a single
one, we would apply action successively to each element of the set. Thus, only one
security check would have to be performed, regardless of the number of processes
in the set.

Is tryKill’ also well-typed? This is more subtle. In Srel
1 , the two branches of

a test construct must receive the same type. Because the function kill requires a
non-trivial security context, it is conservatively assumed that action may do so as
well. As a result, in (say) S=

1 , tryKill’ has (most general) type ∀β.proc → {k :
Pre ; β} → unit, just as kill. Thus, it is well-typed, but its type is more restrictive
than expected.

To solve this problem, we need to keep track of the fact that the behavior (i.e.
the type) of action depends on the outcome of the test, i.e. on whether the privilege
k is enabled. This is precisely the reason for moving to the column i = 2 in our
array of type systems. In this column, the result of a test construct is described
by conditional constraints, which encode the desired dependency. Indeed, in S=

2 ,
tryKill’ has (most general) inferred type

∀ . . . .proc→ {k : γ1 ; β1} → α

where
if Abs = γ1 then ∂Abs = β2

if Pre = γ1 then ∂Abs = β3

if Abs = γ1 then proc→ {k : γ1 ; ∂Abs} → α = proc→ {k : γ2 ; β4} → unit
if Pre = γ1 then proc→ {k : γ1 ; ∂Abs} → α = proc→ {k : Pre ; β5} → unit

The four conditional constraints are generated by Test (see Fig. 11). Of course,
the meaning of such a constrained type scheme is quite obscure, but it is possible
to simplify it, as follows. First, because there is only one occurrence of the variable
β2, this variable can be quantified locally. That is, the first conditional constraint
can be written

if Abs = γ1 then ∃β2.(∂Abs = β2)

It is now evident that this constraint is a tautology—that is, it is equivalent to
true—so it can be suppressed. The second constraint can be suppressed in a
similar way. Then, the third and fourth constraints, whose conclusions are equa-
tions between terms of similar structure, can be decomposed into a conjunction
of conditional constraints whose conclusions are equations between atomic terms.
Performing this decomposition and again suppressing tautological constraints, we
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obtain

∀ . . . .proc→ {k : γ1 ; β1} → α

where
if Abs = γ1 then α = unit
if Pre = γ1 then γ1 = Pre

if Pre = γ1 then α = unit

The second constraint above is again a tautology (of a different kind) and may be
suppressed. Thus, the simplification process yields

∀ . . . .proc→ {k : γ1 ; β1} → α

where
if Abs = γ1 then α = unit
if Pre = γ1 then α = unit

It is important to note that this simplification process can be automated. We chose
to show its intermediate steps, because it would otherwise be difficult to relate the
final type scheme to the code for tryKill’. We now see that this type scheme does
not require the privilege k to be enabled: our analysis was smart enough to prove
that this code is safe.

The reader may wonder why we can’t further simplify this type scheme by unify-
ing α with unit, since both γ1 = Pre and γ1 = Abs imply unit = α. This is because
there remain other cases (namely γ1 = ⊥ and γ1 = >) where α is unconstrained;
as a result, these conditional constraints do not logically imply unit = α.

To fix this apparent problem, one possibility would be to remove ⊥ and > from
the model. In that case, replacing the two constraints above with unit = α would be
a valid simplification. However, this change would effectively add disjunction to the
constraint language—indeed, it would then be possible to encode the disjunction
C1 ∨C2 as ∃γ.(if Pre = γ then C1 ∧ if Abs = γ then C2). (When ⊥ is part of the
model, such an encoding becomes impossible, because of the side condition c 6= ⊥
in Fig. 7.) We conjecture that the constraint satisfaction problem would then have
exponential time complexity, while it currently has quasi-linear time complexity.

Another interesting possibility consists in giving a different interpretation to con-
ditional constraints. Notice that we really wish to use conditional constraints in
only a very limited way. Indeed, we want to allow the branches of a test construct
to receive different types. But we do not wish for these types to differ in arbitrary
ways; we only wish to allow their security annotations to differ. It is in fact possible
to enforce such a restriction. Define ≈ as the binary relation which is uniformly
true on JPresK. Extend it straightforwardly to JkK for every kind k. Then, re-define
the interpretation of conditional constraints as follows:

ρ(τ ′) ≈ ρ(τ ′′) c ≤ ρ(τ)⇒ ρ ` τ ′ ≤ τ ′′

ρ ` if c ≤ τ then τ ′ ≤ τ ′′

This interpretation requires the types which appear in the conclusion of a condi-
tional constraint (here, τ ′ and τ ′′) to be equal modulo security annotations. This
allows the structure of types to be determined using rigid rules (which is desirable,
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because many programming errors are then detected earlier), while keeping the
flexibility of conditional reasoning on security annotations. Under such an inter-
pretation, the type of tryKill’ may be simplified to

∀γ1β1.proc→ {k : γ1 ; β1} → unit

as desired. From a practical point of view, this change in the interpretation of
conditional constraints requires implementing two unification algorithms on top of
one another—one for = and one for ≈—which is straightforward. This variant of S=

2

may offer another good compromise between precision, efficiency, and readability
of the types inferred.

7.3 Subtyping

All of the examples given so far can be given useful types in S=
i for some i ∈ {1, 2}.

In other words, these examples do not require subtyping. Nevertheless, there are a
few cases where the extra precision afforded by subtyping becomes necessary.

Imagine we write a slightly modified version of the wrapper enabler presented in
Sect. 7.1 as follows, where P is some arbitrary condition:

maybeEnabler , λf.p.λx.p. ifP then fx else enable r in fx

This wrapper may or may not enable the privilege r before calling f . In S=
i , its

(most general) type is

maybeEnabler : ∀ . . . .(α1
{r:Pre ; s:γ1 ; ∂Abs}−−−−−−−−−−−−−→ α2)

{β1}−−−→ (α1
{r:Pre ; s:γ1 ; β2}−−−−−−−−−−−→ α2)

i.e. exactly the same as that of requirer in Sect. 7.1. In other words, the type
system asserts, more conservatively than necessary, that maybeEnabler requires the
privilege r. How was this conclusion drawn?

Because f is bound by λ and because HM(X) is restricted to Hindley-Milner
polymorphism, the two uses of f must receive the same type, say α1 → σ → α2.
In the second branch of the if statement, f is called with r enabled. Thus, σ must
be of the form {r : Pre ; . . .}. Since, in the first branch of the if statement, f is
called within an unmodified security context, the type-checker concludes that the
wrapped function also has {r : Pre ; . . .} as a security requirement.

The flaw is really in our use of equality constraints. Because f may be called
with r enabled, they lead us to require σ = {r : Pre ; . . .}, i.e. to believe f must be
called with r enabled. This extremely coarse approximation is good enough when
f has polymorphic type, because we are then able to deal separately with each
of its call sites. Here, however, polymorphism is inhibited, making the problem
unbearable.

A standard solution is to move to a system where equality is replaced with sub-
typing, e.g. S≤1 . There, we obtain

maybeEnabler : ∀ . . . .(α1
{r:γ ; s:γ1 ; ∂Abs}−−−−−−−−−−−−→ α2)

{β1}−−−→ (α1
{r:γ2 ; s:γ1 ; β2}−−−−−−−−−−→ α2)

where Pre ≤ γ ∧ γ2 ≤ γ

This type scheme is much more permissive, because γ2 ≤ γ ≥ Pre does not allow
concluding γ2 ≤ Pre (as was the case when ≤ was interpreted by equality). Indeed,
γ2 may take the value Abs, i.e. the wrapped function may be called in a context
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where r is disabled. The constraint Pre ≤ γ ∧ γ2 ≤ γ then requires > ≤ γ, i.e. f
must be able to accept either state of the privilege r.

Our experience seems to indicate that subtyping is useful only where polymor-
phism is inhibited, i.e. when using higher-order functions. Java has no such con-
struct. Java does have first-class objects, which contain methods; but it seems
reasonable to require that methods be given explicit polymorphic types by the user
as part of class declarations. Considering that subtyping has substantial cost in
terms of readability and efficiency, it may then be interesting not to use it in a
real-world system. However, more work is needed to confirm this conjecture.

7.4 Expressiveness versus discipline

It is undecidable whether the execution of a given program eventually leads to a
security failure. As a result, a safe type system equipped with decidable type in-
ference must be conservative, that is, reject programs that in fact do not violate
the security policy. For instance, in every Srel

i , a function f that requires privilege
r unless some condition P holds receives a type that specifies that f requires r
always, leading to a type error if f is invoked in a context where P holds and r is
not available. Our types, viewed as a specification language for security policies,
only have limited expressiveness. This is a curse and a blessing: while it prevents
some legitimate programming idioms, it also forces programmers to stick to a rea-
sonably straightforward programming style. The key, as always, is to strike a good
compromise between expressiveness and discipline.

8. DISCUSSION

8.1 Extensions

There should be no particular difficulty in extending the ideas of this paper to
more advanced language features such as exceptions, state, modules, and threads.
In fact, for some of these features, we expect the type-the-translation approach to
prove fruitful, by layering e.g. an exceptions encoding on top of the security-passing
encoding.

8.1.1 Java. The approach taken here has recently been shown to be extensible
to the Java bytecode language [Higuchi and Ohori 2003], so the ideas here do trans-
fer to the full JVM. But, modeling all the features of the Java security architecture
is not possible statically. Java views privileges as first-class objects, making static
typing problematic. In our model, privileges are identifiers, and expressions cannot
compute privileges. It would be desirable to extend the static framework to at least
handle first-class parameters of privileges, so e.g. a Java FilePermission, which
takes a parameter that is a specific file, could be modeled. The additional expres-
siveness of Java’s implementation, including dynamic addition of permissions, and
dynamically computable parameters to privileges (for instance a FilePermission
for the string "/tmp/scratch" that was created by appending strings "/tmp" and
"scratch"), is very difficult to model statically.

From a manual inspection of the Sun JDK libraries, a substantial majority of the
security code checks there can be statically typechecked. However, some of the uses
are fundamentally dynamic. These include conditional checking of privileges where
the condition is fundamentally dynamic and so cannot be captured statically. So, a
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purely static alternative would require some recoding of libraries, and a rethinking of
where the security boundary is to be drawn. This is a deep problem, and it remains
an open question whether the best completely static reworking of the architecture
would be powerful enough to make the limitations of the static system acceptable.

An alternative approach is to accept that a completely static approach is not
possible, and to use soft typing [Aiken et al. 1994; Wright and Cartwright 1997].
We discuss this further below, and also remark on extending our model to include
exceptions.

With the addition of JAAS in the JDK 1.4 [Lai et al. 1999], the architecture also
supports general authentication based on principals, not just codebases. The doAs
instruction enables a block of code to be executed under a particular principal. We
do not directly model JAAS, but for principals that are groups fixed in advance, the
structure is static (and, desirably, more declarative than code that refers to specific
users), and so our type system will be able to model it. So, principals Alice
and Bob are not modeled statically, but fixed groups such as DepartmentUser and
GuestUser which could contain Alice and Bob, respectively, could be declared and
checked statically; only the membership of Alice in DepartmentUser would need
to be checked dynamically.

8.1.2 Soft Typing. A soft typing system is a cross between a type system and
a static optimizer. In our context, a soft typing system would allow some ill-typed
check operations through, and mark them as requiring run-time checking. In prin-
ciple, there is no problem with applying the soft typing approach in our framework,
and allows our ideas to be applied directly to the JDK Security Architecture as
now defined. Marked check operations would be treated much like test operations.
The type system should provide a wealth of information to enable an efficient im-
plementation of these tests. The constraint-based conditional type systems such as
S≤2 are particularly appropriate for soft typing since the added expressiveness will
allow more checks to be statically verified.

8.1.3 Implementation of test. Although our system statically checks whether
all check operations will succeed at run-time, there is still a need to carry some
privilege information at run-time to support test, which must dynamically branch
on presence or absence of a privilege. We believe a static optimizer may be able to
remove much of the run-time overhead of test. However, this implementation issue
is beyond the scope of the current foundational study, and is a subject for future
work.

8.1.4 Exceptions. In the simple language presented so far, security violations
are fatal: they cause the program to halt. However, in Java, a security violation
gives rise to an exception, which can be observed and dealt with by any (direct or
indirect) caller. Thus, if our static security type system is to be viewed as realistic,
it must be able to deal with exceptions.

For the sake of simplicity, we haven’t included exceptions in our source language.
However, it should be easy to add them as a second layer, with only little modifica-
tion to our current proofs. In short, the idea is to introduce a new source language,
featuring exceptions in addition to the security constructs, and to translate it down
into an extension of λsec with sums. Indeed, it is a well-known fact that exceptions
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can be defined in terms of sums [Wadler 1985; Moggi 1989; Spivey 1990]. Any Srel
i

can then be lifted, through this new translation, up to the new source language.
This construction shows that the “typing-by-encoding” approach can be used to ac-
count for exceptions. It also shows that several layers of encodings can be stacked
on top of one another, making the proofs somewhat more modular.

This construction gives rise to type systems where function types carry not only
a security precondition ς, but also an effect ε, which describes the exceptions that
may be thrown when the function is invoked. This is a standard feature of type-
based exception analyses [Guzmán and Suárez 1994; Aiken and Fähndrich 1997;
Pessaux and Leroy 2000]. In Java terms, an effect is essentially a throws clause.
However, a throws clause is constant, whereas, in our type systems, effects would be
allowed to contain presence variables (that is, type variables of kind Pres). These
could be related, via constraints, to the function’s security precondition ς, allowing
properties such as “if privilege r is disabled, then this function may throw exception
E” to be encoded in the types—and inferred by a type reconstruction algorithm.

A security check which throws an exception (instead of halting the program) upon
failure can be defined, in the new source language, by combining test and throw.
Thus, our new source language has both fatal and non-fatal forms of security checks.
It is interesting to notice that each form has its advantages. Indeed, if a function
yields a fatal error when the privilege r is disabled, then its type will quite concisely
encode the sentence “r must be enabled”, and the type-checker will automatically
enforce this condition at every call site. If, on the other hand, the function throws
an exception, then its type will more closely encode the sentence “if r is disabled,
then the function may raise an exception”, and the type-checker will not enforce
any pre-condition when calling the function. (It is still possible to manually assert,
using a type annotation, that a given call does not yield an exception, thus forcing
r to be provably enabled at this call site.) The former may be preferred, because it
is more legible, and because it documents the programmer’s intent more precisely.
On the other hand, the use of exceptions leads to a more modular programming
style, because there is often no telling, at the time a particular piece of code is
written, where and how security violations should be handled. We conclude that
both forms of security checks may be of use in practice.

8.2 Related Work

8.2.1 Other analyses of stack inspection. Banerjee and Naumann have devel-
oped an alternate proof of type safety for a programming language equipped with
stack inspection [Banerjee and Naumann 2001]. However, the denotational seman-
tics of their language is in fact a security-passing style transform, which means
that the correctness of this transform is taken for granted. Besson, Jensen, et
al. [Jensen et al. 1999; Besson et al. 2001] define a whole-program static analy-
sis based on model-checking temporal logic formulæ. Stack inspection is one (but
not the only) application of their framework. A later paper [Besson et al. 2002]
takes the analysis one step further by introducing a notion of secure calling con-
text, symbolically represented as a temporal logic formula. However, the analysis is
still not quite compositional, because the control flow graph of the entire program
must be available. Bartoletti et al. [Bartoletti et al. 2001] propose a static analysis
expressed as a fix-point computation. Like Besson, Jensen, et al., they assume that
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programs are represented as graphs where only security checks and control flow are
made explicit. Higuchi and Ohori [Higuchi and Ohori 2003] impose a monomor-
phic type system with subtyping, reminiscent of the one developed in [Skalka and
Smith 2000], on a simple fragment on the JVM bytecode language. They note
that, since check instructions can never fail in a well-typed program, they are no
longer true operations: they are really only type annotations. For this reason, they
suggest removing check from the language and replacing it with a more declarative
type annotation mechanism. Allowing or requiring the programmer to assign a
security-annotated type to each method provides one such mechanism. Koved et
al. [Koved et al. 2002] implement a flow-sensitive, context-sensitive analysis that
determines, in a conservative fashion, which access rights are required by a piece of
Java code. The analysis is precise—in particular, it keeps track of string constants,
which are used in the creation of Permission objects, whereas we do not—and
scales well. However, the paper does not contain enough detail for the reader to
be able to implement the analysis. Koved et al.’s goals appear somewhat different
from ours: they analyze unmodified Java programs, while our intention is to require
programmers to annotate method headers with security requirements. While their
approach requires less programmer effort, it is not clear whether it allows libraries
to be analyzed in isolation, and whether it is able to provide an explanation for
unexpected analysis results. We believe that a type-based approach, although more
costly in terms of programmer effort, helps enforce a discipline that the program-
mer understands and controls. Naumovich [Naumovich 2002] describes a data flow
analysis that ensures that certain privileges must be held in order to reach a certain
program point. His purpose is dual to ours. Indeed, our type system is intended to
ensure that no privilege checks may fail at runtime, but does not directly guarantee
that the program is secure, while Naumovich’s approach allows establishing security
properties, but does not eliminate the possibility of a runtime failure. On a more
theoretical level, Fournet and Gordon [Fournet and Gordon 2002] offer an in-depth
study of the semantics of stack inspection; they establish equivalence laws which
allow compilers to optimize away certain security-related instructions. Clements
and Felleisen [Clements and Felleisen 2003] continue this line of work by developing
an alternate but equivalent implementation of stack inspection that is shown to be
tail-call optimizing.

8.2.2 Other approaches based on a translation. Several researchers have pro-
posed ways of defining efficient, provably correct compilation schemes for languages
whose security policy is expressed by a security automaton [Erlingsson and Schnei-
der 1999; Schneider 2000].

Walker [Walker 2000] defines a source language, equipped with such a security
policy, then shows how to compile it into a dependently-typed target language,
whose type system, by encoding assertions about security states, guarantees that
no run-time violations will occur. Walker first builds the target type system, then
defines a typed translation. On the opposite, our approach consists in defining an
untyped translation, whose output we feed through a type checker or inferencer for
the target language. The composition yields a security-aware type checker or in-
ferencer for the source language. In principle, our approach, which was developed
with stack inspection in mind, is also applicable to security policies specified by
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security automata. Type inference for the target language, where the automaton’s
states and transition function are built-in constants, seems feasible: dedicated con-
straint language and constraint solver may be employed to allow statically reasoning
about them. The untyped translation would thread the security automaton’s state
through every computation, making it an extra argument and an extra result of
every function. Thus, in the derived type system, every function type would carry
two annotations, a precondition and a postcondition, representing the automaton’s
state upon entry and upon exit. Again, these annotations could be type variables,
related via constraints. In contrast with Walker’s work, our approach makes secu-
rity information visible in the type system of the source language: indeed, our aim
is not only to gain performance by eliminating many dynamic checks, but also to
define a programming discipline.

Thiemann’s approach to security automata [Thiemann 2001] may be viewed as
closely related to ours: he also starts with an untyped security-passing transla-
tion, whose output he then feeds through a standard program specializer. The
composition automatically yields an optimizing translation.

8.2.3 The Connection with Monads. The encoding of exceptions alluded to in
Sect. 8.1.4 is a monadic translation [Moggi 1989]. So is the security-passing style
translation described in Sect. 4. In fact, an alternate semantics for our source
language can be defined by successively layering [Filinski 1999] the following on top
of a purely functional core:

(1) a failure monad, defined by F α = α+ 1, representing the possibility of abrupt
program termination;

(2) a security monad, defined by S α = PrivSet → α, where PrivSet represents
privilege sets; enable, check and test can be defined as primitive operations at
this level;

(3) (optionally) an exception monad, defined by E α = α + Exc, where Exc repre-
sents exceptions.

Choosing such a semantics for our source language would remove the need to prove
the translation sound, thus reducing even further the amount of work needed to
prove the correctness of our type system. However, our choice of a concise opera-
tional semantics possibly brings us closer to the original description of Java stack
inspection.

Monadic type systems have been used as a tool to isolate [Peyton Jones and
Wadler 1993] or analyze [Wadler and Thiemann 2003] the use of impure language
features in pure functional languages. Yet, as deplored in [Wadler and Thiemann
2003], there is still “a need to create a new effect system for each new effect”. In
this light, our work may be viewed as a systematic construction of an “effect” type
system adapted to our particular effectful programming language.

8.3 Final Remarks

From this methodological study emerge two type systems which improve on our
previous work in type systems for access control. System S=

1 infers what appear
to be very readable types, while remaining surprisingly expressive, and can be
implemented very efficiently [Rémy 1992a]. System S≤2 is even more flexible and
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could form the basis of a soft typing system for the Java JDK platform. These
systems were developed using a transformational technique and the system HM(X),
which simplified proof effort and inspired design.
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Rémy, D. 1992b. Projective ML. In ACM Symposium on Lisp and Functional Programming
(LFP). 66–75. URL: ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/lfp92.ps.

gz.

Rémy, D. 1994. Type inference for records in a natural extension of ML. In Theoretical Aspects

Of Object-Oriented Programming. Types, Semantics and Language Design, C. A. Gunter and

J. C. Mitchell, Eds. MIT Press. URL: ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.
Remy/taoop1.ps.gz.

Schneider, F. B. 2000. Enforceable security policies. ACM Transactions on Information and
System Security 3, 1 (Feb.), 1–50. URL: http://www.cs.cornell.edu/fbs/publications/

EnfSecPols.pdf.

Simonet, V. 2003. Type inference with structural subtyping: a faithful formalization of an efficient
constraint solver. In Asian Symposium on Programming Languages and Systems. URL: http:

//cristal.inria.fr/~simonet/publis/simonet-structural-subtyping.ps.gz.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



38 · François Pottier et al.

Skalka, C. 2002. Types for programming language-based security. Ph.D. thesis, The Johns Hop-
kins University. URL: http://www.cs.uvm.edu/~skalka/skalka-pubs/skalka-phd-thesis.ps.

Skalka, C. and Pottier, F. 2002. Syntactic type soundness for HM(X). In Workshop on Types

in Programming (TIP). Electronic Notes in Theoretical Computer Science, vol. 75. URL:
http://pauillac.inria.fr/~fpottier/publis/skalka-fpottier-tip-02.ps.gz.

Skalka, C. and Smith, S. 2000. Static enforcement of security with types. In ACM Interna-

tional Conference on Functional Programming (ICFP). 34–45. URL: http://www.cs.uvm.edu/
~skalka/skalka-pubs/skalka-smith-icfp00.ps.

Spivey, M. 1990. A functional theory of exceptions. Science of Computer Programming 14,

25–42.

Su, Z. and Aiken, A. 2001. Entailment with conditional equality constraints. In European
Symposium on Programming (ESOP). Lecture Notes in Computer Science, vol. 2028. 170–189.
URL: http://www.cs.ucdavis.edu/~su/publications/esop01.pdf.

Sulzmann, M. 2000. A general framework for Hindley/Milner type systems with constraints.
Ph.D. thesis, Yale University, Department of Computer Science. URL: http://www.comp.nus.

edu.sg/~sulzmann/publications/diss.ps.gz.

Sulzmann, M., Müller, M., and Zenger, C. 1999. Hindley/Milner style type systems in con-

straint form. Research Report ACRC–99–009, University of South Australia, School of Com-
puter and Information Science. July. URL: http://www.ps.uni-sb.de/~mmueller/papers/

hm-constraints.ps.gz.

Thiemann, P. 2001. Enforcing security properties using type specialization. In European Sym-
posium on Programming (ESOP). Lecture Notes in Computer Science. Springer Verlag. URL:

http://www.informatik.uni-freiburg.de/~thiemann/papers/espps-het.ps.gz.

Wadler, P. and Thiemann, P. 2003. The marriage of effects and monads. ACM Transactions
on Computational Logic 4, 1 (Jan.), 1–32. URL: http://www.research.avayalabs.com/user/

wadler/papers/effectstocl/effectstocl.ps.gz.

Wadler, P. L. 1985. How to replace failure by a list of successes. In Conference on Functional
Programming Languages and Computer Architecture (FPCA). Lecture Notes in Computer Sci-

ence, vol. 201. Springer Verlag, 113–128.

Walker, D. 2000. A type system for expressive security policies. In ACM Symposium on Princi-
ples of Programming Languages (POPL). 254–267. URL: http://www.cs.cornell.edu/home/

walker/papers/sa-popl00_ps.gz.

Wallach, D. S. 1999. A new approach to mobile code security. Ph.D. thesis, Princeton University.

URL: http://www.cs.princeton.edu/sip/pub/dwallach-dissertation.html.

Wallach, D. S., Appel, A. W., and Felten, E. W. 2000. Safkasi: A security mechanism for

language-based systems. ACM Transactions on Software Engineering and Methodology 9, 4

(Oct.), 341–378. URL: http://www.cs.rice.edu/~dwallach/pub/tosem2000.ps.

Wallach, D. S., Balfanz, D., Dean, D., and Felten, E. W. 1997. Extensible security architec-

tures for Java. In ACM Symposium on Operating Systems Principles (SOSP). 116–128. URL:

http://www.cs.princeton.edu/sip/pub/sosp97.html.

Wallach, D. S. and Felten, E. 1998. Understanding Java stack inspection. In IEEE Symposium
on Security and Privacy (S&P). URL: http://www.cs.princeton.edu/sip/pub/oakland98.

php3.

Wright, A. K. and Cartwright, R. 1997. A practical soft type system for Scheme. ACM
Transactions on Programming Languages and Systems 19, 1 (Jan.), 87–152. URL: http:

//doi.acm.org/10.1145/239912.239917.

Wright, A. K. and Felleisen, M. 1994. A syntactic approach to type soundness. Information
and Computation 115, 1 (Nov.), 38–94. URL: http://www.cs.rice.edu/CS/PLT/Publications/
Scheme/ic94-wf.ps.gz.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.


