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Abstract. In this paper we give semantics to LOOP, an expressive typed object-oriented pro-
gramming language with updatable instance variables. LOOP has a rich type system that allows
for the typing of methods operating over an open-ended “self” type. We prove the type system
given is sound; i.e., well-typed programs do not experience “message not understood” errors.
The semantics of LOOP is given by a translation into a state-based language, SOOP, that contains
reference cells, records, and a form of F-bounded polymorphic type.
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1. Introduction

Developing full and faithful type systems for object-oriented programming lan-
guages is a well-known and difficult research problem. To frame the problem we
desire a static type system that preserves all of the classic features of (untyped)
class-based OOP, including treatment of two particularly difficult issues: binary
methods and object subsumption. Significant steps have recently been made toward
solving this problem [10], [7], [4], [3], [22]. One major gap in the aforementioned
works is they take a functional view of objects, whereas objects are inherently
state-carrying entities.

What we accomplish here is a provably sound interpretation of a typed imperative
OOP language. We define a representative language, Loop, providing notation for
class definitions, subclassing, multiple inheritance, binary methods, protection of
instance variables from outside access, dynamic creation of objects of a class, and
message send to “self” or other objects. Thus, the language is similar on the
surface to a “sugar free” version of C4++ or Object Pascal. The main improvement
is LooP’s richer type system, which allows for typing of class methods that take
and return objects of an open-ended “self-type.” We base our approach on the ideas
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of [10]. In addition, we show how these notions may be combined with subtype-
based inheritance, which is sometimes more powerful. We call the F-bounded view
of typing inheritance the open-self view, and subtype-based inheritance found in
languages such as C++ the fized-self view because the type of methods does not
change upon inheritance. We show that both have strengths and weaknesses: it is
always possible to lift objects up the inheritance hierarchy in the fixed-self approach,
a property that sometimes fails for the open-self approach. Any object programmer
knows this object subsumption feature is very useful. It is an open problem of how
the advantages of both approaches may be combined in one language.

We give the semantics of LOOP by translation into a typed imperative language,
Soopr. We take a translational approach to semantics rather than the direct ap-
proach, because SooP itself is a useful foundation for various object coding ideas
and is simpler to understand than the more complex object typing systems. Un-
typed SOOP is the call-by-value lambda calculus extended with records and ref-
erences. The type system of So0P includes records, subtyping and F-bounded
polymorphism for the interpretation of inheritance. We give a collection of type
rules for SOOoP and show the rules sound with respect to the operational semantics:
no run-time type errors occur.

We develop independent translations of LooP terms and types. The translation
of terms interprets objects as a form of record and classes as object generators as in
[9], [18]. The main difference is use of a special memory-based “weak” fixed-point
combinator in place of the normal Y. In a functional world the two are equivalent,
but not in the presence of state. The most important feature of the type translation
is the use of F-bounded polymorphism in SO0P to interpret the open-ended notion
of “self” type needed for the class types of Loop. This means we obtain the proper
typings of methods that take objects of “self” type as argument [10].

Section 2 presents the syntax and type rules for Loop, and concludes with an
example that both illustrates how to program in Loop, and shows some of the
problems involved in typing binary methods and the competing “fixed-self” and
“open-self” solutions. Section 3 defines the Soop language and type system, gives
its formal operational semantics, and contains a full proof of SO0P type soundness.
Section 4 contains the translation of LoOP into SOoP and a proof of the soundness
of this translation, yielding the fact that typed LooP programs do not experience
“message not understood” errors. This paper is a significantly extended version

of [12].

2. The Loopr Language and Type System

We begin our discussion by defining a representative object-oriented programming
language, LooP (Little Object-Oriented Programming language). LOOP is an ex-
tension of call-by-value PCF, with added syntax for classes, objects, object creation,
message send, and instance variable access.

Our convention for use of metavariables to describe the syntax of LooPp is as
follows. We let v range over the set of identifiers, and also use identifiers s for



Num > n == 0]|1] ...
Bool 5 b ::= true|false
Ezp 5 e == v|n|b|pred(e) | succ(e) | iszero(e) | if ¢ then ¢ else ¢

| fnv=>e|e(e) |e.x|e.xz:=¢|e<-m |newe
| class s super u; of ¢; inst T;=¢; meth My =¢;

Figure 1. LOOP Syntax

Typ 3 7 == t|Bool|Nat|7—7'|0bj(t)M |Class(t)(I; M)
| PreObj M |Self(I;t) | Super(I; M)
I o= {11, ..., 2n:Th}
M = {myi:m, ..., my: Ty}

Figure 2. Loop Types

bound class names, and u for bound superclass names. There is a set of labels
Kigp, with z and m ranging over this set, used for instance variable names and
method names, respectively. The “vector notation” A; will be used to indicate a
comma-separated sequence of elements, ranged over by the indicated index variable:
md:eful of z1,...,u, of x,.

The syntax of LOOP expressions is given in Figure 1. Classes are created by ex-
tending a (possibly empty) set of existing classes with additional instance variables

and methods. The expression class s super u; of e; inst z; =e} meth my =€l

extends the class(es) e; by adding the new instance variables and methods indi-
cated. Within the body of the class expression, the name s is bound and plays the
role of “self,” while the u; provide access to the parent class definitions. Use of
the u; to access parent classes is analogous to the use of super in Smalltalk pro-
grams, but since we allow multiple inheritance a different name for each superclass
is needed. Note that LooP does not provide for implicit inheritance of superclass
members; every method of a class must be explicitly listed in its declaration. Thus,
m; = u;<-m; denotes that m; is inherited from superclass u;. This serves to resolve
any ambiguities with multiple inheritance. Classes consist of collections of mutable
instance variables and immutable methods. To simplify our presentation, we shall
restrict ourselves to considering only “protected” instance variables and “public”
methods (using C++ terminology.) Instance variables are visible throughout the
body of their enclosing class expression as well as any later extensions of the class,
but are not visible in the objects generated by these classes. Methods, on the other
hand, are visible in the generated objects as well. The current value of an instance
variable is accessed by the expression e.z, and updated by e.z:=¢’. Methods are
accessed by e<-m.

The syntax of LoOP types is given in Figure 2. The familiar function, number,
and Boolean types need no explanation. I and M are instance signatures and
method signatures respectively, associating types with instance variable and method



names. Equivalently, they may be viewed as finite mappings from K, — Typ; the
distinction will be clear in context.

Terms of type 0bj () M denote objects; the signature M specifies the “interface”
of the object, listing the names and types of the messages which the object recog-
nizes. The type variable ¢ is bound in 0bj (¢) M and represents the type of “self”
within the object’s interface. Terms e of type Class(t)(I; M) represent classes,
which may be used to generate new objects via new e, as well as extended by an-
other class expression. The type variable ¢ is bound within both I and M, and
represents the type of objects generated by this class. Self(7;t), Super(/; M),
and PreObj M are used in type checking class expressions. The type Self(/; ) is
the type of a class object viewed from inside a class definition; there are in fact no
terms of this type, since this internal view cannot escape. Types Super(l; M) are
the types of superclass objects viewed from inside a class definition. The internal
view given by Self(/;t) and Super(/; M) exposes the instance variables, allow-
ing them to be read and set. PreObj M is used inside a class definition as the view
of what objects will look like from the outside, with the instance variables removed.
The “self-type” ¢t may occur free in PreQbj M, Self(/; t), and Super(/; M); such
free type variables are bound by type constraints of the form ¢ < PreObj M when
typing classes. It may help to understand the differences between a Pre0bj M and
an 0bj (1) M type to note the former will basically translate (in Section 4 below) to
a record of methods, and the latter will basically be a recursive record type. The
PreObj M types will also be used in the subtyping rules for bookkeeping purposes.

We use some syntactic abbreviations to aid in program readability: let v=e in €’
stands for (fn v=>¢€’) (e), and sequencing (ey ; es) for (fn z=>fn y=>1y) (e1) (e2).
These give the expected behavior since functions are call-by-value. We also write
e() for the application of e to the “empty” object new (class self super inst

meth) of type 1 = 0bj (t){}.

2.1. The Loor Rules

Figure 3 axiomatizes the subtyping relation between LooP types. A type constraint
system C' consists of a sequence of type constraints ¢ < PreObj M; C' may equiva-
lently be viewed as a mapping from type variables ¢ to their corresponding upper
bounds. C'||t < PreObj M denotes the constraint system C' extended by mapping
t to PreObj M.

Some basic notions of subtyping are now reviewed [8], with special attention to
issues that arise in LooP subtyping. The subtype relation on types 7 < 7’ at first
approximation corresponds to subset. Note in particular that objects in this view
are functions from the label set to the methods, and an object type with added
fields is then a subtype of its smaller ancestor, e.g.

Tab et 0bj(SelfType){a:1—Nat, b:1—Bool} < O0bj(SelfType){a:1—Nat} et Ta,

since T, places no constraint on the type of the b method. It may at first seem
unlikely that this is provable from the subtyping rules of Figure 3, for there is no



Ckhr<7, <

(Refl) ——— (Trans)
Ckr<r Ckhr<r"

t €dom(C) Ckr<n, m<mn
(Hyp) —————  (Fun)
CHt<C(t) Ckrn —1n<r —1
Ct M(m)< M (m), Ym € dom(M")

C F PreObj M < PreObj M’

(PreObj)

(Fold)

C'+ PreObj M[0bj (t) M/t] <0bj (t) M
C'||t <Pre0Obj M’} PreObj M <PreObj M’

(Fix)
C'F Obj(t) M <PreObj M'[0bj (+) M/1]

Figure 3. LOOP subtyping rules

rule for directly comparing object types. However, there are many ways by which
conclusions of the form C'F 0bj (1) M < 0bj(#') M’ may be proven. We focus on the
three most common varieties. First and second, object folding and unfolding rules
are derivable from (Fix) and (Fold), 0bj(¢)(M[0bj(t) M/t]) 5 0bj(¢) M. Third,
the (Fold) and (Fix) rules allow for an “inductive” comparison of object types in
the spirit of [2] via the following derived rule:

C'||t < Pre0Obj M'[0bj(#') M'/t'] - PreObj M < PreObj M'[0bj (') M'/t']

C'+ 0bj(t)M < 0bj (') M’

Using this derived rule, 7 < 75 may be proven. There is an analogous derived
rule for recursive types in SOOP, and in Section 3 the relationship between this rule
and other rules in the literature will be discussed in more detail.

(ObjFix)

In the classic function subtyping rule (Fun) from [8], 71 and 7{ are reversed since
a “smaller” input 7{ leads to “more” type-correct outputs possible. For instance, if
a function has the domain 7, above, it can easily accept an argument of the smaller
type Tap and ignore the extra b method.

Serious difficulties arise when subtyping and use of SelfType in an object type
combine. Consider the following two object types:

Tabc = Obj(SelfType){a:1—Nat, b:1—Bool, c:SelfType—SelfType}

£

Obj(SelfType’){a:1—Nat, c:SelfType’—SelfType’ } = 7o

By using the derived (ObjFix) rule above, we will need to show 7 < SelfType
under the assumption SelfType < 7 for some 7, but this is clearly unprovable. It
is not difficult to establish that if Tapc < Tac Was provable, the type system would
not be sound. Under the “open-self” view of class typing discussed in Section 2.2



below, it will turn out that 7apc could be the type of an object generated by a
subclass of the class generating 7ac. Observe then that these subobjects would not
be subtypes. Note that if SelfType only occurs positively (or not at all) in the types
of the methods, the (ObjFix) rule can be used to show subobjects are subtypes.
This illustrates some potential problems in typing objects with binary methods,
discussed in more detail in Section 2.2 below.

The type rules for Loop programs are listed in Figure 4. A type environment
' is a finite map from variables to types, and T'||# : 7 is its extension mapping
z to type 7. The (Class) rule is the most important and complex rule. When
type checking the bodies of class members (instances in the third antecedent of
the rule, methods in the fourth), the final type of the objects that incorporate
these definitions are not known, since the class currently being type-checked may
have been extended by inheritance. We thus want to view the “self-type” here as
open-ended and parametric. For this we introduce a new type variable ¢ as the “self-
type;” all that is known about ¢ is that it must satisfy the constraint ¢ < PreObj M,
i.e. it contains at least the methods M. This means the self-references in M (and
in I) are to the open-ended “self.” The class name s can be assumed to have type
Self([;t), superclass names are of type Super(/; M ). The first antecedent forces
the superclasses to have the types asserted for them, and the second one requires
the class to be a parametric extension of each superclass.

Rules (Self) and (Super) type the uses of class and superclass names as expres-
sions. Note the rules are slightly different. Rule (Self) gives the type ¢ to the class
name s; this type variable is constrained within C' by ¢ < Pre0bj M and thus (by
rule (Sub)) s is also of type PreObj M. The weaker type PreObj M is not given to
s as s may be returned by a method, and all methods of the returned value should
be visible, not merely the ones defined in this class.

Rule (New) is the obvious rule for typing objects. When a new object is created,
its instance variables are hidden, and the “self” type t becomes fixed.

We now address how method update, modifying a method of an already existing
object, may be encoded in Loopr. The language itself has no features for method
update, but a simple schema allows for it to be encoded. In a more complete Loop
language, this would be an atomic feature. Suppose we had an arbitrary class with
a single method m, intended to be updateable:

. F 5. — ! _ — 1
class s super u; of ¢; inst Tj=¢; meth m=e, mp=¢;

This class 1s then encoded as

class s super u; of ¢; inst mcode=e¢, xj=e}

meth m=£n v=>s.mcode(v), setm==£n v=>s.mcode:=v, my = e}

Note the fact that the instance variable initialization e may refer to the “self” via s
is critical to the translation. If the original class had type Class(?) (I; M), where
M (m) = 7, the modified class can be shown to have type Class(¢) (mcode: 7, I;
setm:7—71, M). The presence of an updateable method will make inheritance
from this class more restrictive—the negative occurence of 7 in the type of the
setm method forces the type of m to be preserved in all extensions of the class, i.e.



Cil'kFe: T

(Sub) CFT<T (var) VE%mD)
C;Fl—ezr’ C;F"’L’:F('U)
(Num) (Bool)
C;TF n: Nat C;TF b: Bool
(Pred) C;TFe: Nat (Suce) C;T'Fe: Nat
C;T F pred(e) : Nat C;T F succ(e) : Nat
(IsZero) C;TFe: Nat (Cond) C;TF e :Bool, es: T, e3:
C;T' F is_zero(e) : Bool C;T'F if e; then ey else e3:
C;Tke: 7—7 ) ) o
Aop) C'Th ey 7 (Abs) CiT||lv:tke: T
o C;T'Fep(ey) o 7 CiLFtnv=>e: 77!
(Mesg) C;TFe: PreObj M (New) Ci;T'Fe: Class(t)(I; M)
C;T F e<-m : M(m) C;TFnewe: 0bj)M
(Self) ['(s) = Self(I; 1) (Super) I'(u) = Super(I; M)
CiT'kFs:t C;TF u: PreObj M
(Selfnst) I'(s) =Self(I; 1) (Suplnst) I'(u) = Super(I; M)
C;TFs.z: I(z) CiThu.z: I(z)
[(s) = Self(I; t)
(SelfAssn) Girhe: I
CiTFs.zi=e: I(2)
C;TF e : Class(t;) (4;; M;) I"=T||s: Self(I; 1) ||
C' ¢t < PreObj M;[t/t;] where u; : (Super(l;; M;))[t/ti]
ChT' kel o I(xj) C'=C||t < PreObj M
C;T'F ey« M(my) I(z) = Li(z)[t/t:], Yo € dom(L;)
(Class)

C;I' F class s super u; of ¢; inst z; = e} meth my = e} :

Figure 4. Loop Type Rules

Class(t)(I; M)



an updateable method behaves more like an instance variable. Making all methods
updateable in Loop would hence be a design mistake.

Updating the method m of an object o' of type 0bj(¢t) M’ generated by an exten-
sion of the above class to method signature M’, is accomplished by o'<-setm(f(0'))
where the function f of type (t—7)[0bj () (setm:7—7, M')/t] represents the new
method code. The parameter to f is the external view of the object itself, since
allowing f to have access to the instance variables would expose them indirectly.
Note that the type of f is fixed to the type of the objects of this particular class,
and so f cannot in general be used to update m of an object from a subclass.
We expect it would be possible to define such an “open-ended” update function in
SooPr, but LooP’s type system is currently too weak to express this.

2.2. LooP Programming and Self

The purpose of this section is two-fold, one to give an example of programming
in LooP and typing LooP programs, and two to explore in detail the problems
involved in typing binary methods.

The main complexity of typing object-oriented languages arises from the interplay
of subtyping and inheritance in the presence of binary methods. A first approxima-
tion to the typing of inheritance is the principle that inheritance is subtyping and
subclasses correspond to subtypes. This principle is currently at the core of most of
the commonly used typed object-oriented programming languages, including C++
and Object Pascal. However, problems arise in the presence of methods that take
and/or return objects of “self-type,” the type of the object containing the method
itself [10], [3].

There are two common views of how “self” should be treated when typing a class
expression. In one view, its type is fized and thus denotes an object of the current
class only. Alternatively, its type can be considered open-ended, meaning it denotes
an object created from the current class or some future extension. It will be shown
in this section how neither view subsumes the other.

To make this idea concrete, consider the example Loop program in Figure 5.
We define a class Num, with an instance variable value representing the value of a
number, and methods dec to decrease this value, isZero to test whether it is zero,
and diff to “destructively” compute the difference between self and another Num.
Note that Num does not inherit from any existing classes, as indicated by the empty
super declaration. The objects n and n’ are instances of Num, created by the new
operation. The class CNum extends Num, adding the new variable cnt and method
click, and overriding Num’s isZero method. Within the body of the new isZero
implementation the inherited version is accessed via number<-isZero, since in the
super declaration number is bound to an object of class Num.

What are the proper LOOP types to give to these classes and objects? Let us
denote by NumObj the type of Num objects n and n’. Intuitively, their method diff
takes a NumObj as argument, and its result is also a NumObj. Since the methods are
the only visible features of an object (cf. Section 2), NumObj should be



let Num = class self
super
inst
value = 0
meth
dec = fn dummy=>self.value:=pred(self.value),
isZero = fn dummy=>is zero(self.value),
diff = fn other=>
if self<-isZero() then other
else if other<-isZero() then self
else (self<-dec(); other<-dec(); self<-diff(other))
in let n = new Num
in let n’ = new Num
in let CNum = class self
super
number of Num
inst
cnt = 0,
value = number.value
meth
click = fn dummy=>self.cnt:=succ(self.cnt),
dec = number<-dec,
isZero = fn dummy=> (self<-click(); number<-isZero()),
diff = number<-diff
in let c¢cn = new CNum

in let cn’ = new CNum
in ...

Figure 5. Hum and CHum Classes

NumObj = 0bj(SelfType){dec:1—Nat, isZero:1—Bool,
diff:SelfType—SelfTypel}

The bound type variable SelfType refers to “the type of the object itself” —
and indeed if n is of type NumObj then n<-diff can be observed to be of type
NumObj—Num0bj by applying rules (Mesg), (Sub), and (Fix) of the LooP type
system.

We now present the two views of typing “self” in classes, first the open-ended
view and then the fixed view.

2.2.1. The open-ended-self typing

First, we consider what type the class expression Num should be given in the open-
ended view, the view most naturally representable in Loop. One possible type to
give Num in LooP is
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NumClass = Class(SelfType) ({value:Nat};
{dec:1—Nat, isZero:1—Bool,
diff:SelfType—SelfTypel})

This typing follows from LooP’s (Class) typing rule as follows. The first two
hypotheses of the (Class) rule are vacuous since there are no superclasses. The most
interesting aspect of the typing proof is how the diff method is typechecked as part
of the fourth hypothesis of the rule. For this method, under the assumption other
is of type SelfType, we must show the body is of type SelfType. The constraint
system has added constraint SelfType < PreObj M for M being the methods of
NumClass, and there is an added assumption that self is of type Self([; ) for I
being the instances of NumClass. Consider the most problematic message send, self
<- diff(other). Using the (Self) rule and aforementioned assumption we may
conclude self is of type SelfType. With (Sub) using the constraint SelfType <
PreObj M, self is proved to be of type PreObj M. Thus by (Mesg), diff is of
type SelfType—SelfType, and since other is of type SelfType by assumption,
the message send type-checks with result type SelfType.

Using the (New) rule, the objects n and n’ are of type NumObj, as expected.

As alluded to at the beginning of this section, the difficult question is the treat-
ment of the type of the binary method diff. Here we give it the function type
SelfType—SelfType, but what exactly is SelfType? The methods defined for
Num objects may be inherited in subsequent extensions of this class (subclasses),
hence the type system must ensure that these methods operate properly even when
applied to objects of these subclasses. For this reason the object denoted by self
within the body of the class definition must be considered as generated by either
the class being defined, or by one of its descendants. Thus the type SelfType is not
fixed when type checking the class definition. All we know is that self responds
to the messages that may be sent objects in any class extending Num objects, and
these may define additional methods. In Loop we take an open-ended, parametric
view of SelfType: it is the type of “self” at object creation time, and thus the
object by then could contain more methods via inheritance.

The subclass CHum can be given the Loop type

CNumClass = Class(SelfType) ({value, cnt:Nat};
{click, dec:1—Nat, isZero:1—Bool,
diff:SelfType—SelfTypel})

by the (Class) rule. Note the typing of this subclass will require showing Num is
of type NumClass (the first hypothesis of the (Class) rule), which was previously
shown. The added assumption that number has a Self type with the methods and
instances of NumClass allows the inherited methods dec and diff to be shown to
be of the proper type. The generated objects by (New) are then of type

CNum0Obj = 0bj(SelfType){click,dec:1—Nat, isZero:1—Bool,
diff:SelfType—SelfTypel}
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2.2.2. The fized-self typing

This is not the only typing that may be given to the example in LooPp. It is possible
also to fiz the type of “self” to only contain fields of an object of the current class.
Taking this view, we can give the diff method the type NumObj—NumObj, and give
the class expression Num the type

FixNumClass = Class(SelfType) ({value:Nat};
{dec:1—Nat, isZero:1—Bool,
diff:Num0Obj—NumObj})

where the open-ended SelfType is never used. A Num object generated using the
FixNumClass typing for Num has the type NumObj, the same type as NumClass
objects. Note however that the (New) rule applied to Num of type FixNumClass
will produce an object not precisely of type NumObj, but in a once-unrolled form.
The (Fold) rule will then be needed to show Num is of type NumObj. The (Fold) rule
is thus critical to typing programs in the fixed-self view. The type of CNum can be
proven to be

CFixNumClass = Class(SelfType) ({value,cnt:Nat};
{click,dec:1—Nat, isZero:1—Bool,
diff:NumObj—NumObj})

and the generated objects cn and cn’ are of type

CFixNumObj = 0Obj(SelfType){click,dec:1—Nat, isZero:1—Bool,
diff:NumObj—NumObj}

Observe CFixNum0Obj is the same as NumObj except that it has an extra click
method; in particular the diff methods have identical types. This means that
CFixNumObj is a subtype of NumObj according to the subtyping rules (the (Fold),
(Fix), and (PreObj) rules in particular). In general, in the fixed-self view subclass
objects will always be of subtypes of superclass objects’ types, so inheritance is
subtyping. Also, observe that this typing would not allow diff to be overridden
if the new diff sent other a click message. The type of diff is fixed at a point
in the hierarchy. This is the first problem with the fixed-self view: some forms of
method override are disallowed.

2.2.3. Inheritance vs subtyping

Consider the following two possible conclusions to the example program:
(1) in (en<-diff(en’))<-click(),
(2) in (cn<-diff(n))<-isZero().

(1) is type-correct using the open-ended type for self. In this case, diff has
type CNumObj—CNumObj, and cn’ has type CNumObj, so the application is sound
and the result is of type CNumObj and thus can respond to a click message.
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However, (1) will not typecheck using the fixed type for self: there, diff has
type NumObj—Num0Obj and cn’ has type CFixNumObj. Now, since CFixNum0Obj is a
subtype of Num0Obj (as mentioned above), cn’ also has type NumObj by (Sub), and
hence cn<-diff(cn’) is well-typed. Unfortunately, the result is of type NumObj, so
the click method of cn’ is lost and cannot be invoked (but note that the invocation
(cn<-diff(en’))<-isZero() would type-check in the fixed view).

In contrast, the opposite situation occurs in (2). Under the open-ended typing
of self, cn is of type CNumObj so diff has type CNumObj—CNumObj. However, n
is only of type NumObj, and NumObj £ CNumObj since SelfType occurs negatively
as alluded to above. Thus, cn<-diff(n) is ill-typed. Clearly (2) type-checks in the
fixed-self view, since in this view inheritance is subtyping: the diff method of cn
accepts arguments of type NumObj.

2.2.4. Conclusions

What this example shows is that neither the pure fixed- nor open-self typing scheme
is completely adequate; there is a tension between allowing more inheritance and
allowing more subtyping. We believe therefore it may be best to let the programmer
choose which scheme is appropriate on a case-by-case basis. If a method only takes
objects of the “self” type and is never overridden, the fixed-self typing will always
be adequate; the open-ended typing can be used whenever no subsumption of object
types up the inheritance hierarchy is needed.

The fixed and open schemes are only two extreme points of a continuum of options.
It is possible to create a class hierarchy that gives “self” initially an open-ended
type, but then at some point down the hierarchy fixes it and keeps it fixed below
that point. In the lower portions of the hierarchy, objects may then be “lifted”
freely up the inheritance tree. In addition, a single class type may contain multiple
occurrences of “self-type”; some can be fixed at this level while others remain
open-ended. In particular, it is possible to have positive occurrences of SelfType
be open-ended and negative occurrences fixed, preserving some open-endedness and
at the same time conforming to the subclasses-generate-subtypes principle.

The terms covariance and contravariance are sometimes used in the literature
when discussing this topic [15]. The open-ended “self” is a covariant view of method
argument types (upon subclassing they may become objects with more methods),
whereas the fixed-self view is a contravariant view (in subclasses method argument
types may be replaced by supertypes, in accordance with rule (Fun); in our example
we kept the types invariant).

3. The Soor Language, Semantics and Soundness

We define the meaning of LooP programs in terms of a lower-level “implementa-
tion” language SooP (Semantics for Object-Oriented Programming), a call-by-value
language which offers simple operations on records and reference cells in addition
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to most of the standard PCF constructs. Let z range over the countably infinite set
of variables Var and ! range over the countable set of labels Lab. The values Val
and expressions Fzp of SOop are the least inductive collections defined as follows:
Val 5 v u= 2 | n | b | Az.e | {l;=v}
Exp 3 e == v | e(e) | if e then e else e | is_zero(e) | succ(e) | pred(e)
| {li=ei} | el | refe | Ve | set(e, e)

def

where n € Nat = {0, 1, ...} and b € Bool = {true, false}.

In addition to the basic types and type constructors, the type system of Soop

provides recursive types and polymorphic function types:
Typ> 6,7 ==t | Nat | Bool | {l;:7} | 7 Ref | pt.7 | ¢
nTyp> ¢ = 7=>71 | V[t; <0;]. ¢

where ¢ and ¢; range over the countable set T'Var of type variables. All labels of a
record type must be distinct; two record types are considered identical if they only
differ in the order of their label-type pairs. The type expression V[t; <#6;]. ¢ binds
the type variables ¢; in each of their upper bounds 6; as well as in the body ¢; this
allows a form of F-bounded polymorphism [7]. A recursive type is of the form ut. 7;
the type variable ¢ is bound in 7. By convention V and p have lower precedence
than the arrow and Ref. We use FTV () to denote the set of free type variables of
the type expression 7.

The Soop types are partially ordered by the subtyping relation <; the following
definitions will be necessary for its introduction. As in LooP, a constraint system
C is a finite function in Con = T'Var — Typ, mapping type variables to their
respective upper bounds. A type expression 7 is closed in C' if FTV(7) Cdom(C);
C'is consistent if C(t) is closed in C for all ¢t € dom(C). Note that the requirement
for consistency allows type variables to appear free in their own bounds.

The valid subtyping judgements are triples from Con x Typ x Typ, written in the
form C' + 7 < 7', which for a consistent C' and closed in it 7 and 7’ can be derived
from the rules in Figure 6. This system is an extension of the standard record
subtyping [8] with recursive and F-bounded polymorphic types.

SooP is not a second order calculus (there are no type abstractions and applica-
tions), therefore we use subtyping to instantiate the type of a polymorphic function.
The rules for subtyping polymorphic types reflect the view that the set of values
(ideal [20]) corresponding to a polymorphic type is the intersection of the sets corre-
sponding to all of its instances. Thus rule (INST) specifies that a polymorphic type
is a subtype of its instances with all of the top level type variables t; replaced simul-
taneously by type expressions 7;, provided the latter can be shown to be subtypes
of the corresponding bounds #; instantiated with the same substitution . Rule
(GEN) provides for e.g. comparing two polymorphic types; the intuition behind the
rule is that a type ¢ is a subtype of a polymorphic type 7 if ¢ is a subtype of all
instances of 7. The standard rule for (F-)bounded quantification [23]

CHtSlgg'_tSHl, C’||t§€2|—7'1§7'2, t%FTV(C)

(S-Arz) CEY[t<0,].m <V[t<0s]. 7
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Crn<t
(REFL) ——— (RECORD)
Crr<r Crdlm, a3 <{i:7]'}
(TRANS) Ckr<q, <"
Ckr<r” (FoLD) Ctrlpt.r/t]<ut.T
t € dom(C) Cllt<orr<o, rit, t¢FTV(C)
(VaR) Cri<c) (F1x) CF pat.7<0[ut.7/1
Chkr<n, mnln CtF 1, <o8; where o = [1; /1]
(FUN) 1= = INST i S 00; where o = [1i/t;
Chr—->m<rm->1 ( ) CHY[LE<0].o<op
amy CIFETE oS¢ {TNETV(C) UFTV(2) =

Ct V[t <0;].¢f
Figure 6. SOOP subtyping rules.

is derived in SooP by
(1) applying (INsT) to the derivation of C||t < 02 ¢ < 61, thus proving
CHthQ F V[tS 61].7’1 STl
(2) applying (TRANS) to the previous result and C|[t <f; F 11 < 73, and
(3) applying (GEN) to the conclusion of (TRANS).

The subtyping rules for recursive types are (FOLD) and (FIX). In the latter, 7
must be contractive in t (in the sense of [20]), written 7 | ¢; in our system this
means that 7 cannot be of the form put;. ... ut,, .t for any m > 0. Note that a rule
for unfolding recursive types (proving C' b ut. 7 < 7[ut. 7/t]) is derivable from (FIX)
for & = 7. Thus we establish that a recursive type is equivalent to its unrolling
with respect to subtyping; this relation is weaker than the type equivalence defined
by Amadio and Cardelli in [2], and as a result some judgements, provable in the
system of [2], are not provable in Soop (e.g. C'F ut. Nat->t < ut. Nat-> Nat->t).
However (FIX) is stronger than the rule for subtyping recursive types of [2]

Clt<t, t'<tbr'<r, tEFTV(F), t' ¢ FTV(r), {t, '} NFTV(C) =10
(#) Chut' 7' <upt.t

In fact, (¢) is a meta-rule in the SOOP type system: each valid subtyping derivation
using (u) can be transformed by

(1) replacing t by ut. 7 in the derivation of the antecedent of (u), producing

a proof of C||t' <pt. 7+ 7 < 7[ut. 7/t];

(2) applying (FoLD) and (TRANS) to obtain C||t' <ut. 7+ 7/ <put.T;

(3) applying (FIX).
Furthermore (FIX) can be used to prove subtyping between recursive types with
negative occurrences of the bound variable, which is impossible with (u) alone, e.g.

Cr pt. {f:{x:Nat}->t, x: Nat} < pt. {f:t->t, x: Nat}

Types are assigned to SOOP terms by the system of proof rules in Figure 7. Here
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(SuB) CiTre:r CH1T<7 157 C;T F e:Nat
C;Tke:7 (IsZuro) C;T +is_zero(e): Bool
z € dom(T) C;TF e:Nat
(VAR) C;TFz:T(2) (Suee) C;T F succ(e): Nat
C;T k- e:Nat
N - bl
(Nat) C;TF n:Nat (PrED) C;T F pred(e): Nat
Ci'ke:r
B e 3
(Boot) C;T F b:Bool (REF) T ref eir Ref
C;I'kerr; C;TFe:1 Ref
RECORD — DEREF =
( ) C,E{l=e;}:{l;: > ( ) C;'kle:r
(SeLECT) Ci'Fe:{l:7} (1) C;TFep:m Ref, eq:7
C;Tkel:T C;TFset(eg, ea):7
(Conp) C;TFe:Bool, ey:7, ea:7 (ArP) CiTreyir—>71, eg:t

C;T'Fif e then e else es:7 C;Ttei(eq):r

(Ass) Clt; <0; T||z:r ke, {GINFTV(C) =10
C;THAz.eV[t; <O;]. 7->7

Figure 7. SOOP typing rules.

a type environment I' is a finite map in Env = Var — Typ; it is closed in a constraint
system C' if T'(z) is closed in C for each z € dom(T'). The valid typing judgements
derived by these rules are quadruples from Con x Env x Ezp x Typ of the form
C; T F e:7 where C is consistent and I is closed in C'. Since we only allow function
types to be polymorphic, rule (ABS) provides also for type abstraction.

The type system of SOOP is powerful enough to allow for a type-correct translation
of Loop programs (and more); yet it was weakened to not include certain types
and proof rules which, if added, would further complicate the proof of soundness
of the system. Some restrictions are:

e Only functions are allowed to be of polymorphic types. Extending polymor-
phism over records is not a conceptual problem, but note that a polymorphic
record of functions would be equivalent to a record of polymorphic functions;
similarly a recursive type could be unfolded under the universal quantifier to
get an equivalent type. We impose this restriction in order to avoid having
polymorphic Ref types of the form V[t <#]. 7 Ref with ¢ free in 7; this type can-
not be given to any value in a sound system. For the same reason we combine
type generalization with abstraction, instead of using a separate generalization
rule — the abstraction prevents evaluation, and frozen references can be poly-
morphic, however e.g. a field of a record should not be of a polymorphic Ref
type. It is possible to have a more flexible language and still avoid these types;
we believe this would be a considerable complication with little reward. Also
excluded from the language are “bottom” types (e.g. V[t < 0].t), whose pres-
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ence would introduce a number of special cases in the most technical part of
our proof, and would not affect noticeably other aspects of the language.

e The omission of rules to distribute quantifiers over type constructors, e.g.
CE V[t <b].1>p < 7->V[t;<b;].p, it {L}NFTV(r)=0

Since the reversed subtyping relation between these types is provable in Soop
using rule (GEN), they would be equivalent if this rule was adopted.

Type inference in SOOP seems unlikely, considering the problems in similar sys-
tems [23]; the possibility of having it in versions of the language is the topic of
ongoing research.

3.1. Operational Semantics of Soop

We present semantics of SOOP in the general framework of [14], [21], [11], [26]. The
operational interpreter of the language is specified by representing the notion of
computation as a binary relation between SOOP terms in memory environments.
As in [26] the memory is treated as a function from variables to values.

We use the notation [z — v] for the map defined only on z with value v, and
fllg for the functional extension of f by g.

A memory ¥ is a finite map in Mem = Var — Val; if 2 € dom(X), then z is the
identifier of a reference cell, and X(z) is the value contained in the cell. Define
FV(E) = UxEdom(E)FV(E("E))'

A computation state (X, e) is a pair of a memory and an expression; it is closed
if FV(Z)UFV(e) Cdom(X).

A reduction context R is recursively defined as

R = o | R(e) | v(R) | if R then e else e | is_zero(R) | succ(R) | pred(R)

| {11 =v, ...,Zk_1=vk_1, lk=R, Zk+1 =€k+41; ...,lm =€m} | R.I
| ref R | ! R | set(R,e) | set(v, R)

and Rle] is the result of substituting e for o in R. The reduction context isolates
the subterm of the expression in which the next reduction step is to be performed.

The single-step computation relation —1 is the least binary relation on Mem x Ezp
which relates all computation states of the forms shown in Figure 8, where R is a
reduction context, and [-] € Nat — N is the obvious interpretation of the numerals;
the arguments to R in the left column are redezes.

The computation relation —* is the reflexive transitive closure of +—;. A closed
computation state (3, e) is stuck if e ¢ Val and there is no state (X', ') such that
(X, e) —1 (X', €'); a state gets stuck if —* relates it to a stuck state. A state
(X, e) diverges if for each (X') ') such that (X, €) —* (X', ') there exists a state
(X", €") such that (X', €’) 1 (X", €”). An example of a stuck state is (X, 3(5));
a diverging state is (X, (Az. z(2))(Az. z(z))) — it is related to itself by —, thus
representing a non-terminating computation.
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(5, RO @) 1 {5, Rlelo/a])
(3, RJ[if true then e; else e3]) —1 (X, Rle1])
(3, RJif false then e; else e3]) —1 (X, Rleza])

(X, R[iszero(0)]) —1 (X, R[true])

(X, R[iszero(n)]) —1 (X, R[false]}, ifn#0

(2, Rsuce(n)]) —1 (X, R[n']), where [n'] = [n] +1

(2, R[pred(n)]) —1 (X, R[n']), where [n'] = [n]—1

(2, R =v:}.1t])) —1 (%, R[vg]), itke{l,...,m}

(3, R[ref v]) —1 (Z||[z — v], R[z]), where z ¢ dom(X)

(X, R[! z]) —1 (&, R[XE(2)]), if z € dom(X)

(2, R[set(z, v)]) —1 (EH[:E — ], EYR[v], ifz €dom(X)

Figure 8. The single-step computation relation.

Directly from these definitions and by induction on the structure of terms we have
the following Lemmas.

LEMMA 1 If (B, €) —1 (X', €') and (3, €) is closed, then (X', €'} is closed.

LEMMA 2 (DETERMINISTIC COMPUTATION) —1 defines a partial function on the
closed computation states.

COROLLARY 1 A computation state computes to a value, or diverges, or gets stuck.

3.2. Soundness of the Soor Type System

Following [26] we establish soundness of the type system of SooP with respect to
the computation relations by proving that a subject reduction property holds for
this type system, and that the stuck states cannot be given types. The first implies
that the type of a computation state is preserved by the single-step computation
relation; together with the second this means that the stuck states are unreachable
from a typable initial state.

In comparison with proofs of subject reduction for the A-calculus [25] and ML-
style polymorphic languages [26], the proof for the SooP type system is complicated
by the rich subtyping relation. The only analog of subtyping in the ML type
system is that an expression of a polymorphic type scheme is also of each type
produced by any instantiation of the type variables of the scheme. This allows a
relatively straightforward proof of subject reduction for the -conversion rewriting
rules. In contrast the instantiation of a polymorphic type in Soop is only correct
if the substituted types satisfy certain subtyping relations; as a result the typing
derivation of the (-contractum of an expression e can be produced only after a
significant transformation of the typing derivation of e. Further complications are
introduced by the non-trivial subtyping on most of the basic Soop types.
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s u= vart | FUN(S, S) | rECORD ((T;), (15), (S0), (7))
| FoLD (¢, 7) | FIX (¢, 6, S)
| st (@), @), . (52)) | cen (@), (@), 5)
SubDer 5 S ::= REFLT | (5;) where i € {1,...,m}, m>1
d == Varz | Natn | BooLb | Recorp ((I;), (D;)) | SeL (I, D)
| ConDp (D, D, D) | IsZEro D | Succ D | PRED D
| REF D | DEREF D | SET (D, D)
| App (D, D) | ABs(C, z, 7, D)
TypDer 5 D == (d, S)

Figure 9. The language of subtyping and typing derivations.

To overcome these difficulties we employ a technique of explicit proof manip-
ulation. We introduce a language of typing and subtyping derivations for Soop
programs, and its semantics in terms of validity of a derivation and the elements of
its conclusion. After establishing some properties of the derivations we apply them
in proving the subject reduction theorem. The proof of the main soundness result
concludes this section.

3.2.1.  Canonical Forms of Derivations

We begin by representing the proof derivations in canonical forms, encoded as
expressions of the language shown in Figure 9.

Most of the rules in Figure 6 have their obvious counterparts, e.g. the SubDer ex-
pression (FUN (S1, S2)) represents the subtyping derivation resulting from applying
rule (FUN) to the two derivations represented in SubDer by Sy and Sy. The I; and

S; elements of the RECORD expression correspond to the labels of the “larger” type
in the conclusion of rule (RECORD) and the derivations of their respective types (the

antecedents), while E and 7/ are the “extra” labels and types of the “smaller” type.
There is no construct corresponding to (TRANS); if a derivation has a non-empty
subtree of applications of (TRANS) at its root, the corresponding SubDer expres-
sion is the sequence of derivations found at the leaves of this subtree, each with an
application of a rule other than (TRANS) and (REFL) at its root — since (TRANS)
is associative, the exact way in which the subtree is formed is immaterial, and any
(REFL) can be removed from the sequence, unless it is the only element.

The only typing rule with no direct correspondence is (SUB). It can be applied to
any SOOP term; we therefore choose to only consider typing derivations in which it
is applied exactly once to each subterm. For each derivation we can find an equiv-
alent one (i.e. one proving the same judgement) with this property; in particular it
suffices to insert an application of (SUB) (with an instance of (REFL) for the sub-
typing antecedent) for each subterm where there is none, and combine subsequent
applications of (SUB) into one, with the subtyping antecedent being the transitive
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s (sl [s)e

VART 1 C(t)

FUN (51, 82)  [Si)e =>{(Sale  (Sile —>[Sa)e
RECORD ((1;), (E), (S5, (7)) i (Sile, Gy L [Sife}
FOLD (¢, 7) T[ut. T/t] ut. T
FIX (t, 6, S) /.tt «S]]Cﬂfﬁf) g[ﬂt ((S]]CHtSG/t]
INsT ((T), (8:), @, (Si) VIt <O pl{Sile/ti]
GEN ((I), (B5), S)  (S]c V[t <0i. [Sher=e;
(REFL T]c =7 [REFL 7)o =T

((s1, o sm)]e = (sile [{s1s s smdle = [sm)e

Figure 10. Reconstructing types from subtyping derivations.

sequence of the respective premises. This leads to a proof tree representable in
TypDer: at each node there is an application of one typing rule determined by the
syntax of the SOOP term, and a subtyping derivation.

Not all elements of SubDer or TypDer correspond to valid derivations. To define
the latter we introduce partial functions recovering the informationin the conclusion
of a derivation, given the context (for subtyping — the constraint system, for typing
— also the environment). Thus {S]¢ is the “smaller” type in the conclusion of the
subtyping derivation corresponding to S with constraint system C', while [S)¢ is
the “larger” type; similarly [D]% is the type in the conclusion of D in context C; T,
and £(D) is the SOoP term whose type is derived by D. To avoid extra notation we
define the respective functions also on the subterms s and d of SubDer and TypDer
expressions. The definitions are in Figures 10 and 11 respectively.

The validity of a derivation is formally determined by the rules given in Figures 12
and 13, where the meaning of C'>S is “S is a valid subtyping derivation in context
C”, and similarly for LD,

In summary we have the following Lemma.
LEMMA 3

(i) CF 7 < 1" is a provable subtyping judgement if and only if there exists S €
SubDer such that C>S and {S]c =7 and [S)c = 7'.

(i) C;T F e:7 is a valid typing judgement if and only if there exists D € TypDer
such that LD and (D) = e and [D]L = 7.

Ezample: The subtyping derivation
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d £(d) [d]E
VarRz z I'(z)
NATn n Nat
BooL b b Bool
Recorp ((I,), (D;)) {l;=E(D;)} {6 D)5}
SEL (I, D) &(D).1 rif [D]L = {l: 7}
ConND (Dl, DQ, D3) if (C/‘( ) then g(DQ) else S(Dg) [[Dg]]g
IsZErRO D is_zero(£(D)) Bool
Succ D succ(€(D)) Nat
PRED D pred(E(D)) Nat
REF D ref (D) [D]L Ref
DerEF D ! £(D) 7 if [D]5 = 7 Ref
SET (Dl, DQ) set( (Dl) g( )) [[Dg]]g
APP (D1, Dy) E(D1)(E(Dy)) T if [Di] = [Da]e—>7
ABs (5; <0;,z,7,D) Ax.E(D) V[ < 0.7 - >[[D]]F””“" '
£((d, 5)) = &(d) [(d. )& = [She

Figure 11. Reconstructing terms and types from typing derivations.

Crovartifft € dom(C)
C >FUN (51, 52) iff CDSl and CDSQ
C vrecorD (), (I1), (S), (1)) iff CS; and {l;}n{T7} =0 and 7/ closed in C
C'vFoLD (¢, 7) iff pt. 7 is closed in C
CoFIx (¢, 0, S) iff C' &S and [S)er = 0 and (S]er |
where C' = C||t <0, and t ¢ FTV(C)
C vInsT ((T;), (E} ®, (E}) ift C'>S; and [S;)e = o6; where o = [(S le/t:]
CvGeN ((B), (6;), S) iff C'vS and {I;} N (FTV(C)UFTV({S]c)) =
and{(STc", [S)er} € FnTyp
where C' = C|t; < 0;

/\

0

=

C >RrEFL 7 iff 7 15 closed in C
Cro(s1, ...,s8m) iff Cps; for 1 < i< m,
and [s;fc = (sit1]c for 1 <i<m

Figure 12. Valid subtyping derivations.
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LeVar z iff z € dom(T)
Leéif 6 € {NaT n, BooL b}
LeRecorp ((), (Dy)) iff LeD;
LeSer (I, D) iff LoD and 3r : [D]L = {I: 7}
1;~[>(30ND (Dl, Dz, Dg) iff E‘DDiJ [[Dl]]lgv = Bool and [[DQ]]F = [[Dg]]g
LesD iff LoD and [D]L = Nat
for é € {IsZERO, Succ, PRED}
LeRerF D iff LoD
LoDEReF D iff LoD and 37 : [D]L = 7 Ref
1;~[>SET (Dl, DQ) iff EDDl, EDDQ and |ID1]]F = [[DQ]]E Ref
EDAPP (Dl, DQ) iff EDDl, E«DDQ and 37 : [[Dl]]r = [[D2]]E' ->T

T — s Dlzir = . —_—
o>ABs (t; <0;, x, 7, D) iff Cllt,SG,DD and 7, 0; are closed in C||t; <0,

Lo(d, S) iff Led, C o8 and [d]% = (S]¢

Figure 13. Valid typing derivations.

() CJt<t->NatF  t->Nat<t->Nat by (REFL)
(2)CF pt.t=>Nat < (pt.t->Nat) -> Nat (FIx) of (1)
(3) C+ V[t<t->Nat].t->Nat < (ut.t->Nat) -> Nat (INsT) (2)

(4) CF  (pt.t=>Nat)->Nat < pt.t->Nat (FOLD)

(5) CF V[t<t->Nat].t->Nat < ut.t->Nat (TRANS) (3,4)
(6) CF Nat < Nat (REFL)

(1) C+  (pt.t->Nat) ->Nat < (Y[t <t->Nat].t->Nat) ->Nat (FuN) (5,6)
(8) C'+ V[t<t->Nat].t->Nat < (V[t <t->Nat].t->Nat) ->Nat (TRANS)(3,7)

is encoded as (sg, FUN ((so, FOLD (t, t > Nat)), REFL Nat))
where sg = INST ((t), (t->Nat), t-> Nat, ((FIX (t, t -> Nat, REFL (t ->Nat))))). O

LEMMA 4

(i) Let C" be a proper extension of C, i.e. dom(C") D dom(C) and C'(t) = C(2)
for allt € dom(C); let S be a subtyping derivation, and C'>S. Then C' S,
(STt = (Sle and [Sher = [S)e-

(ii) Similarly for environments and typing derivations.

Proof: By structural induction on the derivations. [ |

DEFINITION 1 Two subtyping derivations are equivalent in a context if they prove
the same judgement in this context:

Sw~c S iff CoS, CuS', (Sle = (S']e and [S)e = [S')ec.
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Let ¢1]|¢2 denote the concatenation of two arbitrary sequences ¢q; and ¢o. We
define S1]S2 (the “concatenation” of two subtyping derivations) as S1|S2, if both
S1 and Sy are sequences, and as the other argument, if one of them is a REFL (the
ambiguity here disappears for valid derivations, see Lemma 5). Furthermore for
Dy = (dy, S1) € TypDer and Sz € SubDer we define D1 Sy = (d1, S1]S2) € TypDer.
Directly from the definitions we have

LEMMA 5 IfC’ [>Sl, CDSQ, and [[Sl»c = «Sz]]c, then CDSll]SQ.
CoroLLARY 2 IfLeD, CvS, and [D]L = (S]c, then LeD]S.

LEMMA 6 If C and C|[t; <0; are consistent, C||t; <0; >S, and {S;} are subtyping

derivations satisfying C >S; and [S;)c = ob;, where the substitution o is [{S;]c /],
then there exists S’ € SubDer such that CvS’ and (S']c = 0((5]]()”% and [S")c =

olShe)r=e-

Proof: Assume that all type variables bound in subterms of S are renamed to
5

not appear free in S;. To obtain S’ from S, we extend o to a map ¢ on sub-
typing derivations by applying o to all type terms in the derivation, and replacing

occurrences of VAR ?; by S;; thus for instance

o5 (s1, ..., 5m) = 0s1]].. . [0 sm
o’ (VAR t;) = S;
o®(VAR t) = (VAR ), if t ¢dom(o) L
o* (st ((T), @), 7, (SD) = (st (@), (00), o7, (5S1)), ete.

By induction on the structure of S the derivation S’ = ¢°$ is valid in C, and it is
easy to see that the types reconstructed from S’ are related to their counterparts
in S via 0. [ ]

The system of subtyping rules, excluding (REFL) and (TRANS) as in the definition
of SubDer, would be deterministic in some sense (e.g. only one rule may be applied
to infer C'F 7 < 7/ given the outermost type constructor of ) if not for the rules
(FoLD) and (FIX). The following Lemmas show that in certain cases this ambiguity
can be dealt with by eliminating the occurrences of the corresponding SubDer
constructors from the “top level” of a sequence, thus converting it to canonical
form.

We begin by showing that applications of FIX can be moved deeper into the
derivation tree so that only the special case UNFOLD (¢, 7) = FIX (t, 7, REFL T) is
left at top-level.

Given a constraint system C and a type variable ¢, define inductively N¢(t) as the
set of types of the form pt;. ... ut,.to (n > 0) such that to = ¢ or C(tg) € Ne(2).

LemMmA 7 For every C and t, N¢(t) is downward closed, i.e. if CF 7' <71 and
T € Ne(t), then 7' € Ne(t).
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Proof: By induction on the structure of the derivation S of C' + 7/ < 7. The
statement is trivial if S = REFL 7; we now assume S = (s, ..., $n) and proceed by
induction on the length of S. Our goal is to prove {s,,]¢ € N¢(t). From Figure 10
the type [S)c can have the form ut;. ... ut,.to only if the outermost constructor
of s, is one of VAR, FOLD or FIX. The first two are base cases of an induction on
the depth of S. The proof is immediate in the first case; in the second one we have
n > 1, and {sm]c is either pta. ... put,. 7, if to = t1, or pta. ... ut,.to otherwise,
but both of these are in N¢(t). For the inductive case s, = FIX (¥, ', S') we
assume that the statement of the Lemma is true for all derivations of lesser depth
than S, and let €’ denote C||t' < 0'. There are two subcases:

(i) 0" = pty. ... pty.t" where k < n; this leads to a contradiction: by inductive
hypothesis {S']¢: € Nei(t'), which is only possible if {S']cr = ptrya. ... ptn. ¥
(because t' ¢ FTV(C'), t' does not occur in C’(t"") for any " except possibly ¢/
itself), but this type is not contractive in ', and FIX could not be applied.

(ii)) @ = 7, hence [S)¢r = 7 and (spm]c = pt'. {S']¢. By inductive hypothesis
we have (S']¢r € N¢i(t), therefore {(S']¢ is of the form pt}. ... put).th, where
t, # t' (otherwise (S']cr is not contractive in t'); and since ¢’ ¢ FTV(C) we
have (S']¢r € Ne(t), which implies (sm]c € Ne(t). u

COROLLARY 3 If C' S where S = ¥IX (8, 0, (57)) (or S = GuN (&), (6;), (57))),
then none of s; is VARt (resp. VAR;).

Proof: Suppose first that S is a FIX, s; = VAR for some j, and let C' = C||t < 6.
If j = 1, then ((s1]¢r = ¢t;if j > 1, we have [s;_1)cr =t € Nei(t), and by Lemma 7
(for the derivation (s1, ...,sj_1)) it follows that {s1]c: € Nei(t), which is only
possible for {s1]l¢r = pt1. ... pty.t (since t ¢ FTV(C)). In neither case is {(s1]¢
contractive in ¢, contradicting the validity of the application of FIX.

The proof for the case when S is a GEN is quite similar; observe that N¢(¢) N
FnTyp = 0 for any C and t. ]

DEFINITION 2 Define the root set R(S) of a subtyping derivation S = (55) as the
least set with the following property: s € R(S) if either s € {35}, ors € {g} where
GEN (), (0;), (g)) € R(S) for some T;, 0;; define R(REFLT) = 0. We refer to the
sequence (g) (in the antecedent of a (GEN) rule) as to a floor of the root set.
COROLLARY 4 If C'»S where S = viX (¢, 0, S') (or S = GEN ((f;), (0;), S)), then
VARt & R(S') (resp. {VARE;} NR(S) =10).

Proof: By Corollary 3 and Definition 2. [ |

LEMMA 8 If C'b S, then there exists S' ~c S such that if s € R(S') and s =
FIX (¢, 0, So) for some t, 0, and Sy, then Sy = REFL 6, i.e. s = UNFOLD (¢, 0).

Proof: By inductions on the depth of S. Consider an element s € R(S) of the
form FIX (t, 0, So), and let 7 = {(S]c|s (hence ((s)]c = pt.7); our inductive
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hypothesis is that Sy has no occurrences of FIX in its root set, except as UNFOLDs.
Observe that Sy and (s) satisfy the conditions of Lemma 6, namely C||t <8>Sy
and C »>(s) and [(s))c = o6, where o = [ut.7/t]. By that Lemma we have a
derivation Sj such that C' >Sj with {(Si]lc¢ = o7 and [Si)c = of; moreover the
only structural differences between Sy and Sj are at the occurrences of VAR ¢, now
replaced by (s). But none of these are in the root set of Sy (by Corollary 4), and
by inductive hypothesis there were no (proper) FixXes there either, so the root set
of S is F1X-free. The last step of the proof is to note that UNFOLD (¢, 7)[S’" ~¢ (s);
thus we can replace each FIX by its expansion prefixed by an UNFOLD. [ |

LEMMA 9 Let S € SubDer be such that C S and [S)c is not a recursive type.
Then there exists S’ ~c S with the property that none of the elements of its root
set has FOLD as its outermost constructor.

Proof: By Lemma 8 there exist subtyping derivations, equivalent to S in C, in
the root set of which FIX occurs only as UNFOLD. Let S’ be a derivation with these
properties and with the least number of FOLDs in its root set, and suppose this

number is not zero. Choose a floor (s, ..., s,,) with FOLDs in it, and let s be the

r¥m
FOLD with largest index. Then [s})lc is a recursive type, and therefore it cannot

be the case that j = m since [s/, )¢ is not recursive — either by assumption, if

S = (g), or by Definition 2 and Figure 12 (the largest type on the floor must be in
FnTyp). Also by assumption S’ is a valid derivation (C'>S"), hence (s} 1]c = [s})c
which (by.inspection of Fi.gure 10) is only possible if s}, is FOLD or FIX. But. iy
was the rightmost FOLD in the sequence, so 5}+1 must be FIX; by assumption
the only form in which FIX occurs in the root set of S’ is UNFOLD, so we have

also (s7]c = [sj41)c. Therefore the pair of s; and si,; can be removed from
S’ yielding an equivalent valid derivation with less FOLDs, which contradicts the
assumption about S’. ]

LEMMA 10 (CANONICAL SUBTYPING PROOFS) IfCvS and [S)c is not recursive,
then

(1) if {S]c is one of Nat, Bool or 7 Ref (for some 1), then S ~¢ REFL {S]¢;

(i1) if {S1c = {li: 7}, then S ~¢ (s) where s is ¢« RECORD;
(iil) if {(Sle = Y[ti <0;]. 71 => 13 and [Shc is not polymorphic, then S ~¢ (s1, s2)
where s; s an INST and s s a FUN.

Proof:

(i) By Lemma 9 there is a valid derivation S’ ~¢ S not involving FOLD in its root
set. Suppose S’ is a sequence with first element s}. Since {s}]¢ is a Nat, Bool
or 7 Ref, an inspection of Figure 10 shows that s} can only be a FOoLD. But by
assumption no element of R(S") is a FoLD. It follows that S’ is not a sequence,
hence S' = REFL {(S]c.
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= (s corresponds to v Lemma 9, inspecting Figure we see tha
It s’ / ds to S by L 9 ting Fig 10 that
{(silc = {l;: 7} only if | is a RECORD, and hence [s')¢ is also a record type;
by induction on the length of S’ all of its elements are RECORDs. Furthermore
it is easy to check that

(RECORD (L;, L, (S}, ..., S!'), 7)) ~c
(RECORD (Ly, L} | .|, ((SH].. 1S5, « oy (SP] . ]S ), Tl .| T)

(we let i range from 1 to m, and assume without loss of generality that the label
sequence Ly, is an initial subsequence of each of L;.)

Alternatively, if S’ is not a sequence, we can use the equivalence

REFL {[;: ;} ~¢ (RECORD ((I;), (), (REFL 75), ()))

We first show that we can eliminate all occurrences of GEN from the top level
of S. Let S’ be a derivation corresponding to S by Lemma 9 (in this case

{(Slc # [S)c, hence S’ must be some sequence (E}), suppose it has a minimal
number of occurrences of GEN at top level, and s; = GEN (), (0;), So) with

[si)c = V[ti <0;]. ¢ is the GEN with largest index at the top level of S’. It
cannot be the last element of the sequence, since [S)c is not polymorphic by
assumption, and from Figure 10 the only possible forms of 5}-{-1 are FOLD, GEN,
and INST; but there are no FOLDs in the root set (and hence in the top level)
of &', and s} was the rightmost GEN, so s;,; = INST (@), (0:), @, (S)) (since
((5}4_1]]0 = [[sé))c) Note that Sy and S; satisfy the conditions of Lemma 6 (cf.
Figure 12 for validity of INST and definition of the substitution ¢). Thus we
have a derivation S§ such that C'>S} with {(Si]c = o(So]c and [Sihec = op;
note also that R(Sj) has the same number of occurrences of GEN as R(Sg) (by
Corollary 4 none of the VARs replaced in Sy are in its root set). But o{So]c =
{(Sole = ((5}]](;, since the variables #; are not free in it; also |Is}»+1))c = op. Thus
we can replace (s}, sj,;) by Sy in the top level of S’; the resulting derivation
has one GEN less than S’ in its root set, contradicting our assumption.

Thus there exists (E} ~¢ S with no occurrences of FOLD or GEN at top level;
therefore (by inspection of Figure 10) (s}]¢ can be a polymorphic type only if
s{ is an INST, and hence [s})¢ is a function type 7->7'. If the sequence has
more than one element, then s, can only be a FUN therefore {st]c = [si)c is
again a function type; therefore (similarly to case (ii) of this Lemma) the rest
of the sequence is equivalent to a single FUN:

(FUN (S;, SI)) ~c (FUN (S1]...[Sm, Sil-.-[SL))-

If s} is the last element, we can append (FUN (REFL 7, REFL 7)) to obtain the
required form. m
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3.2.2. Subject Reduction Theorem

The main idea in proving subject reduction is that the single-step computation
relation induces a similar relation on derivations, i.e. that we can construct a type
derivation for the contractum given the derivation for the redex, and it can then
be replaced in the reduction context’s derivation.

We define typability of memories and computation states.

DEFINITION 3 A memory X is typable in T if for each € dom(X) there is a closed
type 7 such that T'(z) = 7 Ref and ;T F X(z): 7.

DEFINITION 4 T F (X, e):7 if and only if dom(T') = dom(X), the memory X is
typable in T, and ;T Fe:7.

LEMMA 11 IfT F (X, e):7, then (X, €) is closed.

Proof: By Definitions 4 and 3 T + (3, e):7 implies that there exist valid in T
type derivations for all expressions in the memory, as well as for e. By induction
on TypDer all free variables in an expression with a type derivation valid in I’ must
be in dom(T'), and by Definition 4 dom(T') = dom(X). [ ]

LEMMA 12 (REPLACEMENT) IfT F (X, Rle]):7, where R is a reduction context,
then
(i) ;T Fe:7" for some 7', and

(i) if 0;TF €7, then T F (X, R[']): 7.

Proof: By Lemma 3 and induction on the structure of the derivation D of type
7 for Rle] in T'; note that by definition R binds no variables. [ |

IN[ERES
C||T:Z8;
closed in C and C is consistent. IfS; are subtyping derivations satisfying C >S; and

[Silc = o0; where the substitution o is [{S;]c/ti], then there exists D' € TypDer

satisfying £(1/) = £(D) and (N 7To D and [D]NT = o[ D] T

LEMMA 13 (INSTANTIATION) Let D € TypDer be such that >D where T' is

Proof: Similar to the proof of Lemma 6. Extend o to o? on typing derivations by
applying o to all type terms and o° (defined as in Lemma 6) to all SubDer terms,
e.g. mapping (ABs (Cy, zo, 7o, Do), So) to (ABs (o o Cy, g, om0, 0P Dy), 0°Sp).
By induction on the structure of D and Lemma 6 the derivation D’ = P D is
valid in C' and T||z:o7 (which in turn is closed in C), and the type derived by
D' is as promised; note also that £(D') = £(D), since o does not touch TypDer
constructors. |

LEMMA 14 (SUBSTITUTION) Let D be a derivation for the SOOP term e satisfying
g”x:T >D, and D' be a derivation for ¢’ such that LeD' and [D']L = /. Then
there exists a derivation D, for e[’ /x] for which LoD, and [D,]% = [D]E1"" .
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Proof: To obtain D, from D we replace all free occurrences of VAR z in D by
D' (after renaming of bound variables as per [¢//«]). This results in a derivation
for e[e’ /a]; its validity in T' and the preservation of the derived type is proved by
induction on the structure of D. [ ]

THEOREM 1 (SUBJECT REDUCTION) Let I' F (X, ¢e):7 and (X, e) —1 (¥, €).
Then there exists I’ such that T'F (X', €'):T.

Proof:
By Lemma 11 (3, €) is closed, so by Lemma 1 (X', ¢’} is closed as well.
By Definition 4 and Lemma 3 in terms of the language of derivations we have that

e Y is typable in I', hence there exists a function D® € Var — TypDer such
that dom(D=) = dom(X) and for each € dom(X) it holds that gDDz(l‘),
E(D=(z)) = X(z), and [[Dz(m)]]g =7/, where T'(z) = 7' Ref;

e (;T F e:7, hence there exists a derivation D such that gDD, E(D) = e, and
[[D]]g =r.

We need to construct a new environment IV, a function D=’ and a derivation D’
with the same properties with respect to the new state.

By definition of the single-step computation we have e = R[eg] where ¢ is a
redex; then e’ = R[ej], where e} is the corresponding contractum. Let Dy be the
subterm of D deriving the type of eg; by Lemma 12(i) it follows that gDDO.

In cases (i)—(viii) and (x) below there are no side effects of the reduction (i.e.
Y = ¥), so in these cases we set [V = T and D= = D>. By Lemma 12(ii) we
then have §>D’ and £(D’) = ¢’ and [D']y = [D]y (implying §;T F ¢':7) if D’ is
obtained by replacing Dy in D by a derivation Df, such that y>Df and £(Dj) = €,
and [D4]5 = [Dol5.

Depending on the structure of e we have the following possibilities:

(i) e0 = (Az.ep)(v); then ef = ep[v/z]. Since £(Dy) = eg, by definition of &
(Figure 11) the only possible form of Dy is

Dy = <APP ((ABS (ti ng; xz, TI, Db), Sf), Dv), S)

for some 7;, 0;, and 7'; here Dj derives a type for €5, and D, derives a type for
v. Let Cp =¢; <0; and I'y = T||z:7".

From §&Dg we have 0 0S5y, (Sflp = V[t <6;].7'-> [[Db]]g’;, and [Sily =
[[DU]]E—> (Sl Applying Lemma 10(iii) to S;, we get Sy ~y (s1, s2) where

s1 = st (@), (6:), ' > [De]es, (52)

52 = FUN (S}, S5)
for some (S;), S} and S4. Let 7 -> 75 = [s1) = {(s2]¢ be the intermediate type
of this sequence. Taking into account that gDDO implies EZDDIM and 0 > Sy
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(vii)

(viii)

implies ) >s; and therefore 0 S;, by Lemma 13 from D, and S; we can obtain

]]g||x:7'1

a derivation Dj for e; satisfying [Dj =7.

We now use D once again to infer joD, and [Sy )y = [Dy]§ => (STp. Recalling
that (s2]p = 71 ->7 and [s2)y = [Sf), we can conclude that (S7]y = [D.]§
and [S{)y = 1. Therefore D} and D, [S] satisfy the conditions of Lemma 14,
and hence there is a derivation D for e, = e3[v/z] such that joD, and [D,]j =
79. Now we can use (St]lg = 72, [Sew = (S]p and Corollary 2 to construct the
necessary derivation Dy as D,[|S4]S.

eg = if true then ¢, else e, hence ej = e;. It must be the case that Dy =
(CoND (D., Dy, Dy), S), where £(D;) = ¢;; from gDDO follow gDDt and [D;]} =
{(S]e, therefore D = Dy]S.

eo = if false then e; else ef; this case is similar to (ii).

eg = is_zero(0); then ey = true. Here we have Dy = (IsZEro (NaT 0, S'), S)
hence (S]y = Bool. Therefore Dy = (BooL true, S) is the required derivation.

eo = iszero(n) where n # 0 is similar to (iv).

eo = succ(n), and e = n’. Here Dy must be of the form (Succ (NaT n, S), S),
hence {(SJy = Nat, and so Dj = (NaTn', S) is a valid derivation satisfying
[Doly = [Dolg-

eo = pred(n) is similar to (vi).
eo = {l;=v;}.l; then e = vy where [ =}, € {E} Therefore
Do = (SEL (I, (RECOrD ((I;), (D.;)), 5')), )

where £(D,,) = v;. From gDDo we get (S']p = {li:[[DUi]]g} and [S")y =
{1 : {ST¢} — hence by Lemma 10(ii)

S =y (RECORD (i), (I;), (St), ([Dw,15)))

for some subtyping derivation S ; here the index j ranges over {1, ..., m}\ {k}.
Since

(rECORD ({1t), (I;), (Sk), ([0, T5)Mo = Ll (Silo, - [Do, 153

it follows that (S;]g = [Du,Jj; on the other hand [Si)y = (S]g, so we can
build the required derivation as Dj = D,, [S;,[S.

eo = ref v. In this case ¥/ = X||[z’ — v] and e = z’, where &' ¢ dom(X).
The derivation Dy is of the form (REF D,, S), where £(D,) = v. Let I =
T||«': {S]g. Since by Definition 4dom(T') = dom(X), it follows that ' ¢ dom(T'),
and by Lemma 4(ii) we have gIDDE (2) for all € dom (%), and gIDD. In par-
ticular this also implies (by Lemma 12(i)) that gIDDU and (STp = [D,] Ref =
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[[DU]]EI Ref. Therefore D, is the derivation we need to type the new mem-
ory in the new environment: let D> = D=||[z' — D,]. Furthermore, by
Lemma 12(ii) we obtain a valid in TV derivation for €’ if we replace Dy in D by

Dj = (Varz', S).

(x) eg = !z where & € dom(X). Then e, = X(x) and Dy = (DEREF (VAR z, S’), S);
also € dom(T') with T'(z) being a reference type. From gDDo it follows that
{(S'Te = T'(x) and [S"Yy = {STo Ref, and hence by Lemma 10(i) applied to S’
we have I'(z) = (S]y Ref.

Since z € dom(X) we have £(D*(z)) = X(z), > D= (z), and [D>(z)]j = (STe-
Therefore Dfj = D=(z)[S is the necessary derivation.

(xi) eg = set(z, v) where € dom(X); then ¥/ = X||[# — v] and ej = v. It must be
the case that Dy = (SET ((VAR z, S}, D,), S), and from gDDO follow gDDv and
T'(z) = [[DU]]g Ref (applying Lemma 10(i) to S’). Therefore X' is still typable
in I =T — to wit, the necessary derivations are D= = D=||[2# — D, ]. The
derivation for efy is D = D,]S. [}

3.2.3. Soundness of the Soop Type System

LEMMA 15 If the type environment T is such that for each x € dom(T') T'(z) = 7 Ref
for some type T, then

(i) C;T+ v:Nat if and only if v € Nat;

(ii) C;T F v:Bool if and only if v € Bool;

(iil) C;T F v:r Ref only if v € Var;

(iv) C;T Fv:{l:7} only if v = {l; =v;} for some T;, and | € {I;};

(v) C;TFw:r" =>7" only if v = Az.e for some x and e.

Proof: Directly from Lemma 10; to illustrate we prove (i). Suppose v & Nat.
Then v € Bool or v € Var or v = {l;:v;} or v = Az.e; hence d in a type derivation
D = (d, S} for v must be respectively a BooL, a VAR, a RECORD, or an ABs, and

from [d]5 = (S]c, [S)c = Nat (i.e. not a recursive type) and the corresponding
cases of Lemma 10 we get a contradiction for S. [ ]

LEMMA 16 (STUCK STATES ARE NoOT TYPABLE) IfI'F (X, €):7, then eithere €
Val, or there exists a state (X', €') such that (3, e} —1 (X', €').

Proof: By induction on the structure of e:

Base Case: e =zxore=nore=bore=Az.e ore={l:v;} — in all cases
e € Val.
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Inductive Hypothesis: If ¢/ ¢ Val is a proper subterm of e, (¥, ¢’) is closed,
0;T F € :7' for some type 7/, X is typable in T, and dom(T') = dom(X), then
there exist a reduction context R’ and a redex eg such that ¢/ = R'[eg].

Inductive Step: We prove that if e € Val, (X, €) is closed, §; ' - e: 7, X is typable
in T', and dom(T') = dom(X), then e = R[eg] for some reduction context R and
redex eg.

Depending on the structure of e we have the following cases:

(i) e = e1(e2). By definition e is typable in §); I" (i.e. has a valid type derivation

— cf. Figure 13) only if e; is typable in ;' (no new bound variables are
introduced by the application). If e; ¢ Val, by the inductive hypothesis
e1 = R'[eo], and therefore e = R[eg] for R = R'(eq). Similarly if e; € Val
but ez ¢ Val we have es = R'[eg], and then e = Rleg] for R = e1(R').
If both e; and ey are values, we note that the only form of a valid type
derivation for e is an APP, which requires that ;T ey : 7/ -> 7" for some
7' and 7”; then by Lemma 15(v) we have e; = Az. €', and hence e = R[eg]
for R = o and eg = €.

(ii) e = if ¢’ then e; else e5. From the typability of e (in §;T) follows §;T F
e’ :Bool; if ¢’ ¢ Val, from the inductive hypothesis we have e = R[eg] for R =
if R’ then e; else ez where ¢/ = R/[eg]. Otherwise (¢’ € Val) Lemma 15(ii)
gives us that ¢’ € Bool, hence e is itself a redex.

(iii) e = is_zero(¢'); therefore ;' F ¢’:Nat. If ¢’ ¢ Val, inductively ¢’ = R'[eg],
and hence R = is_zero(R') is the reduction context necessary for e = Rleg];
otherwise (¢’ € Val) by Lemma 15(i) it follows that ¢’ € Nat¢ and therefore
e is a redex.

(iv) e = suce(e’), and

(v) e = pred(e’) are similar to (iii).

(vi) e={li=e€1, ...,lm =en} where not all of ¢; are values (otherwise e € Val).
Let k be the smallest index for which e & Val; then e = R'[eg] by inductive
hypothesis, and for R = {ly =€y, ..., lg—1 =ep_1, R, lk+1=€p41, - -, Im =em}
we have e = Rleg].

(vii) e = €'.l; therefore 0;T + ¢ :{l:7'}. If ¢’ ¢ Val, the inductive hypothesis
yields €/ = R'[eg], hence e = R[eg] for a reduction context R = R'.[. If ¢’ is
a value, Lemma 15(iv) states that ¢’ is a record (of values) and one of the
labels in it is [; thus e itself is a redex.

(viii) e = ref e’ —ife’ ¢ Val, inductively ¢/ = R'[eg], and e = Rleg] for R = ref R';
otherwise e is a redex.

(ix) e = ! €’; hence we have ;T - ¢’: 7' Ref for some 7. The case ¢’ ¢ Val is
handled by induction. If ¢’ is a value, by Lemma 15(iii) it is a variable z, and
hence it is typable only if # € dom(T'). By assumption dom(T') = dom(X)
and X is typable in T', so I'(z) is a reference type if and only if # € dom(X).
Therefore € is a redex.
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(x) e =set(eq, e2) —if e; ¢ Val, then by the inductive hypothesis e; = R'[eg],
and so e = Rleg] for R = set(R', e3). If e; € Val but es ¢ Val, then
e = Rleg] for R = set(e1, R') where e3 = R'[eg]. Finally if both e; and e
are values, similarly to the previous case we have e; = # € dom(X), hence
e is a redex. [

THEOREM 2 (SOUNDNESS OF THE So00P TYPE SYSTEM) IfI'F (X, €):7, then ei-
ther (X, €) diverges, or (X, €) —* (X', v) where O; " F v:T for some .

Proof: Directly from Theorem 1 and Lemma 16. [ ]

4. LooP Semantics and Soundness

In this section we show how LoOP terms and types may be given meaning by
translation into SooP, the result being LoOP programs experience no “message
not understood” errors upon execution.

4.1. Semantics of LooP terms

The semantics of LooP terms is defined via a translation into SoOop terms; this
translation is given in Figure 14.

In many encodings of object-oriented languages [9], [18] an object is defined as
a record formed by taking a fixed point of a class function, a function mapping
records to records. This results in a recursive record, and the methods of the
object—fields of the record—gain access to its “self” by unrolling the fixed point
expression. Consider as an informal illustration the case of an object o of class ¢
with method m whose definition refers to the value of the object:

¢ = class...meth m = ...self... c=Xxself . {m= .. self ...}
translates to

0 = new ¢ 0=Y(c)
where Y is the fixed-point combinator. In purely functional languages this en-
coding produces good results, but the situation changes with the introduction of
effects and call-by-value semantics. The associated fixed-point operator is then only
well-defined on functionals, but as pointed out for instance in [10], classes do not
correspond to functionals.

Several solutions with various limitations have been proposed. One possible so-
lution is to “freeze” the access of an object to its “self,” as in

ce=Xself A(). {m=...self()...}
0=Y(c)()

Further complications arise if the language is to support mutable instance variables
belonging to objects—in the straightforward implementations their allocation takes
place either “too early” (they are shared by all objects of the class) or “too late”
(new cells are being allocated at each access to the object).
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Two approaches to solving this problem are discussed in [17]; the one for which
the author gives a denotational semantics is based on the interpretation of the fixed
points of class functions as state transformers. This bears some similarity to the
above translation, but the state is represented as an explicit parameter of certain
semantic functions, which allows the reallocation to be avoided by reusing the same
state for each unrolling of the fixed point. The presence of imperative constructs
in our target language renders this method inapplicable to Soop.

Alternatively the cells may be created before the fixed point is taken, but inside
another abstraction of the class function, since otherwise they will be shared by all
instances of the class. In our informal notation an object of class ¢ with instance
variable x is then

¢ = class ... c=A().let y=ref ... in

yielding Aself AQ).{z=y, m= .. .self()...}
0=Y(c())()

However we can only do this with the restriction that the initial values of the
instance variables may not refer to self. We believe self should be allowed in
instance variable initializations, for it makes possible method update in objects. A
method stored in an instance variable (as a function) may be updated by setting the
instance variable to a different function. So if instance variable initializations could
not refer to self, the initial value of an updateable method could not refer to self
and would thus be of limited use. See the end of Section 2.1 for an implementation
of updateable methods in LoopP.

Our approach allows using self in instance variable initializations by defining a
“weak” fixed-point combinator (a fixed-point operator on functionals, i.e. expres-
sions of the form Az.Ay.e [21]) in terms of mutable cells in the spirit of Landin
[19]. A first approximation to this is

inst x = ...
meth m = ...self...
O = new c¢

Y, = Af.let r=ref null in (set(r, f(r)); ! r),

where null is some “dummy” initial value. The class function f now maps a cell
containing a record to a record, and this cell will be assigned the value of the
“fixed point” (the object being created). This combinator evaluates f(r) only once
before “tying the knot” on the object, therefore it can be applied to class functions
with side effects, in particular allocating mutable cells, to obtain objects with the
intuitively expected behavior.

However, this definition of Y, is lacking: the class function f takes a reference
cell as argument, and there is no nontrivial subtyping on reference cells in Soop.
This means inheritance from classes would not type-check. More precisely, when a
class function f is passed a reference r to the future object, and f inherits features
from a superclass defined by f’, f must apply f’ to r (since the “self” of the object
must be shared between inherited and new methods). However, since a reference
is not a subtype of any other reference type, either f and f’ have the same type
(false if f extends f'), or one of f(r) and f’'(r) must not be type-correct. In either
case, inheritance will not work.
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[v]=o
[n]=n
[6]=0
[ succ(e) ]| = succ([e])
[prea(e) ] = pred([e])
[ iszero(e) ]| = iszero([e])
[if e; then ey else e3] = if Je1] then [eo] else [es]
[fanv=>e] = Av.[€]
[eCe ] = [(eT)
[e. l‘]] = ([e]({}).inst.z)
[e.z:=¢"] = set([e]({}).inst.z, [e'])
[ e<-m ] = [e]({}).meth.m
[new e ] = Y/([e])
[ class s super u; of & = As. let u;=[e;](s) in
inst zj=¢} meth my =€} (Ax. Ay x)({ inst = {a; =ref [e;]3,

meth={m; = [e}/]} })

Figure 14. Translation of LooP Terms to SOOP Terms

There is no inherent need for general references here; the cell is set only once, and
after that it is read-only. So, the idea is to define a “cell accessor function” of type
{}->{...} that when applied will return the result in the cell. f then takes this
cell accessor function as argument, and will thus not have a Ref type argument.
The following “weak” fixed-point combinator achieves this effect.

= Af.let r=ref (Az.Q) in (set(r, f(Az. (! r)(2))); ! r)

where Q = (Az. z(x ))()\J: z(z)) is a diverging computation. The initial value placed
in the cell is Az. 2 since it has all function types and thus imposes no additional
type constraint on the cell. It is worth noting that Y/(f) is the fixed point of f
when f is a functional, for its application evaluates without side effects [21].

Let us now examine the encoding of Figure 14 more carefully. For uniformity,
we interpret classes as functions from frozen records {}->{ ...} to frozen records,
and objects as frozen records. These records in turn have two fields, inst which is a
record containing the instance variables, and meth a record containing the methods.
The new operation then applies Y, to the class to make an object. Note the instance
variables are not hidden in Soop. We model instance variable hiding by crippling
the LooP type system to not allow typing of access to the instance variables of
objects by removing them from object types.

Each class function is a wrapper around the class functions of its superclasses.
Within its body, the function first applies its superclass functions to its own cell ac-
cessor; the resulting record holds the instance variables and methods defined by the
superclass whose “self” name has been bound to the subclass’s cell accessor. These
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inherited values are then available for use in the body of methods and instances of
the child class.

It is important to recognize the implications of this inheritance mechanism. Each
class function will be applied to several different kinds of cell accessors, one for each
of its subclasses. This fact has important consequences in the LooP type system,
and motivates the F-bounded polymorphism of Soop.

Since LOOP is given semantics by translation, no evaluation relation for Loop
computations is defined. In a more complete presentation we would define such a
primitive evaluation mechanism and relate it to SOoP evaluation, but a translation
is sufficient for our purpose of characterizing erroneous LOOP executions. By using
a translation it is also more easy to relate our language with other work in the
literature that is based on standard notions of function, record, and reference. So,
for practical reasons we now find it more fruitful to pursue a translative approach
to meaning. The risk is the possibility that a translation will miss some key idea;
we see no evidence for this as of yet but that does not rule out the possibility. See
[1] for an alternative, primitive theory of object execution and typing.

DEeFINITION 5 A LOOP program e becomes stuck if its corresponding SOOP trans-
lation in empty memory (0, [e]) gets stuck.

In particular, note that a “message not understood” error in LOOP corresponds
to an attempt to access a nonexistent field of a record in Soop. Such attempts
lead to stuck SooP states, and thus LooP programs that have such translations
are considered erroneous under this definition.

4.2. Semantics of Loop Types

The translation of LooP types to Soop types is given in Figure 15, following the
general technique sketched above. The most important feature not discussed is
how the open-ended “self-type” may be represented by F-bounded quantification.
Classes are functions from frozen records to frozen records, taking as a parameter
a representation of the final object created by this class and any further extensions
(the “self”). The final type of the objects created by this class are not known at this
point; indeed, a class can be part of several distinct class heirarchies, each producing
objects of different types. Thus, classes are polymorphicin the type of their object’s
public interface(s), implemented by means of the F-bounded quantification of Soop.
When ¢ occurs free in M, the methods implemented by this class have open-ended
notions of “self-type.”

4.3. An Example Translation

To illustrate the translation of LooP to SO0oP, we translate the Loop example of
Section 2.2 into Soop. The translation of the LooP program of Figure 5 using the
translation of Figure 14 is given in Figure 16. As can be seen, each Loopr class
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Types: [ Bool ] = Bool
[ Nat ] = Nat
[r=r"]=T1->[]
[t]=1{F->{meth:t}
[Predbj M ]| = {}->{meth:[M]}
[0bj ()M ] = {3} ->{meth: ut. [M]}
[Class(t)(I; M) | = V[t <[M])]. [Self(I; t)—Super(I; M)]
[ se1f(l;t) ] = {3 ->{inst:[I], meth:t}
[ super(I; M) | = {¥->{inst:[I], meth:[M]}

Instance Variables: [{Z;77} ] = {z;:[r;] Ref}
Methods: [{mim} ] = {my:[n]}

Figure 15. Translation of Loopr Types

let empty = Y, (Aself. let in (Ax. Ay.x)({inst={}, meth={}}))
in let Num = Aself.
let in (Ax. Ay.x) ({
inst = {value=ref 0},
meth = {
dec = Adummy. set(self({}).inst.value, pred(! (self({}).inst.value))),
isZero = Addummy. is_zero(! (self({}).inst.value)),
diff = Xother.
if self({}).meth.isZero(empty) then other
else if other({}).meth.isZero(empty) then self
else (
self({}).meth.dec(empty);
other({}).meth.dec(empty);
self({}).meth.diff(other) ) } })
inlet n =Y, (Num)
inletn' =Y, (Num)
in let CNum = Aself.
let number = Num(self)
in (Ax. Ay. x) ({
inst = {value = ! (number({}).inst.value) },
meth = {
click = counter({}).meth.click,
dec = number({}).meth.dec,
isZero = Addummy. (self({}).meth.click(empty); number({}).meth.isZero(empty) ),
diff = number({}).meth.diff } })
in let cn = Y, (CNum)
inlet cn’ =Y, (CNum)
in (cn({}).meth.diff(cn"))({}).meth.click;
(en({}).meth.diff(n))({}).meth.isZero

Figure 16. Translation of the LOOP program of Figure 5 to SOoP.
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Constraints: [t < Pre0bj M ]| =1t < [M]
Hypotheses: [v:7]=wv: ][]

Judgements: [CEr<]=[C]F[]<[]
[C;TFe:7]=[CLICDF el : 7]

Figure 17. Translation of LooP Judgements

translates into a function that generates objects, and new creates an object of the
class via Y, .

Consider the open-self typings; recall from Section 2.2 the LooP types NumClass,
NumObj, CNumClass, and CNum0bj. They are translated to the following SooP types.

[NumClass] = V[SelfType < Mn]. {In, SelfType)) => {In, Mn})
[Num0bj] = {}->{meth: uSelfType. My}
Iy = A{value:Nat}
Mpy = {dec:unit->Nat, isZero:unit > Bool,
diff : ({3 => {meth:SelfType}) => {} => {meth: Self Type}}

[cNumClass] = V[SelfType < Mcn]. {Icw, SelfType) —> (Icn, Men)
[CHumObj] {} -> {meth: uSelfType. Mcn}
Icn = A{value, cnt:Nat}
Men {click, dec:unit-> Nat, isZero:unit -> Bool,
diff : ({} => {meth:SelfType}) => {} -> {meth: SelfType}}

where (77, Tar)) =" {3} -> {inst: 77, meth: 737}, and unit = {} -> {meth: {}}.

4.4. Soundness of the Loor Type System

We now may show Loop type derivations are sound by translation into Soop.
Translation of LoopP type judgements into SOOP type judgements is as shown in
Figure 17. For the most part, the translation is straightforward, as the transla-
tion of judgements is homomorphic in its treatment of expressions and terms. Its
translation of typing constraints deserves some additional commentary, however.

If a LooP type constraint ¢ < PreObj M were translated in a homomorphic
fashion following the scheme for translating types given in Figure 15, the result
would be

{3} ->{meth:t} < {}->{meth: [M]}

This is not a valid SOOP type constraint, since it does not relate a type variable
to its upper bound. However, such a subtyping relation is equivalent to SO0OP type
constraint ¢t < [M], as is obvious by examination of the SOOP subtyping rules.

LEMMA 17 The translation of each Loopr sublyping rule is a provable SOop sub-
typing derivation.



37

Proof: Examining each rule in turn:
(i) Rules (Refl), (Trans), and (Fun) translate directly into their SOOP equivalents.

(ii) The soundness of (Hyp) is essentially the derivation of
t <[M]F {}->{meth:t} < {}->{meth:[M]}
which follows from rules (VAR), (RECORD), and (FUN).

(iii) The translation of (PreObj) is provable by rules (RECORD) and (FUN) in a
similar way.

(iv) (Fold) and (Fix) translate into derivations involving rules (FUN), (RECORD),
and (FOLD). Translating the result of substituting 0bj(¢) M (which translates
to {} =>{meth: ut. [M]}) for t (which translates to {} -=>{meth:¢}) in PreObj M
is the same as substituting pt. [M] for t in {3} ->{meth: [M]3}. [ |

LEMMA 18 (LooP SUBTYPING) IfC F 7 < 7' is derivable via the LOOP subtyping
rules, then [C]F [ 7] < [ 7] is a provable SooP judgement.

Proof: By induction on Loop subtyping judgements, and Lemma 17. [ ]

LEemMa 19 If C;T F e : 1 is provable in Loop, the corresponding judgement
[CT; ICT + el : [r] is provable in Soop.

Proof: By induction on the proof of C;T I e : 7. Considering the rule in the
proof of C;T' F e : 7 in turn:

(i) Rules (Var), (Num), (Bool), (Pred), (Succ), (IsZero), (Cond), and (App) trans-
late directly into their Soop equivalents, and thus the conclusion follows by
induction.

(ii) Rule (Sub). The conclusion then follows by Lemma 18 and rule (SuB).

(iii) Rule (Abs). The conclusion follows by rules (ABs), (INST), and (SUB), where
rule (ABS) generalizes over an empty set of type variables.

(iv) Rule (Mesg). As [e<-m] = [e]({}).meth.m and [Pre0bj M] = {} ->{meth: [M]},
the conclusion follows by rules (App), (RECORD), and (SELECT).

(v) (New) translates into the purported SooP derived rule:
[CT; ICT F el = V[t < [M]]. [self(I; t)—Super(l; M)]
[CT; [0 F Y/ ([el) = {3 —>{meth: ut. [M]}

([ New ])

where Y,/ =Af.let r=ref (Az.Q) in (set(r, f(Az.(!r)(2)));'r). First, note that
Q= (Az.z(z))(Az. z(x)) can be given any type 7, since Az.z(z) can be given
type V[t < t->7].t->7 by rules (VAR), (SuB), (ApPP), and (ABS); we choose
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(vii)

(viii)

7 = {inst:[I], meth: ut. [M]}, and hence Az.Q has type 7’ = {}->7. Then
Az. (!7)(z) has type 7' under the assumption that r is of type 7/ Ref. Thus, if
f is given type 7/ =>7', then Y, will be of type (7' ->7")->7'.

Notice also that C' + pt.[M] < [M][ut.[M]/t] by rule (FIX); thus [e] can
be given type 7' =>{}->{inst: [I], meth: [M][ut. [M]/t]} (by rules (SuB) and
(INsT), instantiating ¢ to ut. [M]), which by (FoLD), (RECORD) and (FUN) is a
subtype of 7/ =>7'. The conclusion then follows by rules (SUB) and (APP).

(Self). The conclusion follows by rules (VAR) and (SUB), since
[ Self(I;t) ] = {3} ->{inst:[I], meth:¢} < {}->{meth:t} =[1¢]
by rules (FUN) and (RECORD). Rule (Super) follows in a similar fashion.

(SelfInst). If s has type [ Self(I; t) | = {}->{inst: [I], meth:t}, then[e.x ]| =
I ([el({3).inst.x) has type [I(z)], by rules (APP), (SELECT), and (DEREF) and
the way the instance variables are translated. Rule (SupInst) follows in an iden-

tical fashion, and rule (SelfAssn) to an analogous way using rule (SET) in place
of (DEREF).

(Class). Suppose t < [M]. If [{] < [Pre0bj M;[t/t;]] is provable under this
assumption, it must have been proven by rules (FUN) and (RECORD). Thus, t <
[M;[t/t:]] is provable as well under this assumption. Now by hypothesis [C]; [I]
F [e:] : [Class(¥;) (I;; M;)] is provable. Since [Class(¢;) (I;; M)] = V[t; <
[M;]]. [self (I;; t;) —Super(I;; M;)] and ¢ satisfies this bound, by rule (SuB)
and (INST) each [e;] can be given type [Self (I;[t/t;]; t)]—[Super (I;; M;)[t/t]]
Now suppose s has type [Self(I; ¢)] = {}-> {inst: [I], meth:t}. By rules (FUN)
and (RECORD) and the hypothesis that I;(2)[t/t;] = I(z) for each z € dom(I) it
can be shown that [Self (]; ¢)] < [Self(J;[t/t;]; 1)] Then by (SuB) and (APP)
each [e;](s) has type [Super(I;; M;)[t/t;]]. If under the additional assumption
that u; has type [Super(/;; M;)[t/t;]] it can be shown that [e}] has type [/(z;)]
and each [e}] has type [M (my)], then {inst={z; =ref [e;]}, meth={my, = [e}]}}
has type {inst:[I], meth:[M]}. The desired judgement then follows by rule
(ABs). [ |

THEOREM 3 (SOUNDNESS OF LooP TYPING) Typed LooP programs do not be-
come stuck.

Proof: Suppose ;0 e:7. By Lemma 19, §; 0 - [e] : [] is then a provable Soop
judgement, and by Theorem 2 (i, [e]) does not get stuck. [ ]

5.

Discussion

We have shown here how the ideas of [7] used to model typed functional OOP can
be applied to Loop, a state-based object-oriented programming language. The
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problem of OOP typing cannot be said to be completely solved, however. As
the example in Section 2.2 illustrates, there is a tension between inheritance and
subtyping, and in LoOP the programmer is forced to choose one over the other.
It would be desirable to have a solution that did not force this decision on the
programmer.

Ghelli presents another solution to the fixed/open “self” problem that always
preserves subtyping between subclass and superclass objects, but at the expense of
requiring redefinition of a method whenever the type changes, and doing dynamic
dispatching based on the type information at run-time [15]. See [10], [3] for more
discussion of how the open-ended view of “self” relates to other approaches in the
literature.

In constructing Soop we developed a provably sound axiomatization of F-bounded
quantification in the presence of state that is strong enough to show the Loop type
system sound, and at the same time weak enough so the Soop type system may
itself be shown sound. We believe SOo0P is of independent interest as an “Object
Typing Workbench”: alternate schemes for typing objects may be expressed in
Soop, and this strong foundation greatly simplifies the task of formulating a sound
type system for OOP languages. The type system of SooP offers recursive types
with subtyping weaker than the one defined in [2] but stronger than that of [3].
The novel (FIX) rule may be of independent interest. The presentation also differs
from others because type generalization and instantiation is implicit as in ML, not
explicit as in System F. The proof of subject reduction for SO0P is involved, but it
may be that no significantly simpler form exists.

Bruce and van Gent [6] have defined an imperative OOP language, TOIL, which is
an imperative extension of Bruce’s TOOPL language [3]. TOOPL/TOIL and Loop
are closely related, since they are all ultimately based on F-bounded polymorphism;
here we outline some differences. We interpret LooPp via translation to Soop, while
TOIL is given semantics directly. The TOOPL/TOIL subtyping rules do not allow
for folding and unfolding of object types, and this means the fixed-self typings will
not be possible there. The Loop (ObjFix) rule is somewhat more general than the
object subtyping rule of TOOPL/TOIL. In LooP the initial value of an instance
variable may refer to “self,” and if a function is stored in an instance variable, this
allows a form of method override in objects. TOIL on the other hand has a nil
object, which is of every object type, but responds to every message with an error.
LooP provides for multiple inheritance and nested class definitions; TOOPL/TOIL
does not. The rules have quite a different character; our rules are more directly
inspired by how the typings translate into Soor. We have no need for Bruce’s
“matching” relation <,,.;s—1n our formulation subtyping alone suffices.

There are several important language issues which are not addressed here. Loop
is monomorphic, even though it is translated to a polymorphic language. It would
not be difficult to lift the F-bounded polymorphism of Soop into Loop. Classes
are not fully “first-class citizens” in LooP; to achieve this, some notion of exten-
sible record would need to be added to Soop [24]. There is no analogue here to
the “friend” functions or “private” class variables of C++. Also, the question of
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decidable type checking or decidable type inference is not addressed here. However,
an explicitly-typed version of LooP that is closely related to the language of this
paper is proven to have a decidable type-checking algorithm in [13]. A decidability
proof for type-checking a variant of TOOPL is presented in [5].
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