Constrained Types and their Expressiveness

Jens Palsberg* Scott Smith'

October 4, 1995

Abstract

A constrained type consists of both a standard type and a con-
straint set. Such types enable efficient type inference for object-
oriented languages with polymorphism and subtyping, as demonstrated
by Eifrig, Smith, and Trifonov. Until now, it has been unclear how
expressive constrained types are.

In this paper we prove that for a language without polymorphism,
constrained types accept the same programs as the type system of
Amadio and Cardelli with subtyping and recursive types. This result
gives a precise connection between constrained types and the standard
notion of type.

1 Introduction

A constrained type consists of both a standard type and a constraint set.
For example,
Av.zz: (v —w)\{v<v—w}

Here, v and w are type variables. This typing says that the A\-term Az.zx has
every type of the form v — w where v, w satisty the constraint v <v — w.

*Jens Palsberg, Laboratory for Computer Science, Massachusetts Institute of
Technology, NE43-340, 545 Technology Square, Cambridge, MA 02139; email:

palsberg@theory.lcs.mit.edu.
tScott Smith, Department of Computer Science, The Johns Hopkins University, Balti-

more, Maryland 21218; email: scott@cs. jhu.edu.

When combined with universal quantification, such types enable efficient
type inference for object-oriented languages with polymorphism and subtyp-
ing, as demonstrated by Eifrig, Smith, and Trifonov [5, 4]. Until now, it has
been unclear how expressive constrained types are.

In this paper we characterize constrained types without universal quan-
tification, that is, types of the form ¢ \ C where ¢ is a simple type and C is
a constraint system. Our example language is a A-calculus generated by the
grammar:

E =z e.F|E1F;y|0|succ E .

We prove that constrained types accept the same programs as the type system
of Amadio and Cardelli with subtyping and recursive types [2]. In their type
system, types can be presented by the following grammar:

to=t; =ty |Int|v]pvt| T|L

Here, — is the function type constructor, Int is the type of integers, v is a
type variable, pv.t is a recursive type, and T and L are the greatest and the
least types, respectively. Our result thus gives a precise connection between
constrained types and standard types.
To illustrate what type derivations look like in the two type systems,
consider the A-term
Az.x(succ x)

In the Amadio/Cardelli type system, we can derive that this term is typable,
as follows. Define A = ()[z « L].

Az L 1 <Int
Atz L 1 <Int—=T AF z:lInt
AFz:Int—= T Al succ x: Int
AF z(succz): T
0 Az.z(succz): L — T

In the constrained type system, we can derive that this term is typable as
follows. Define B = ()[z « v], where v is a type variable.

BF.z:v\0 v\l <Int\ {v<lInt}
Bt.z:Int\ {v <Int}
Bt succ z:Int\ {v < Int}
BF.z(succz):w \ {v<lInt, v <Int = w}
0. Az.z(succz) v = w\ {v <lInt, v <Int — w}

BF.z:v\0

2

One may understand the constrained type system as producing a representa-
tion of a range of possible types rather than just a single type. For instance,
in this example no constraints are imposed on w in the constrained type
derivation, so it may be any type and not just T.

Type inference for the Amadio/Cardelli type system is computable in
O(n®) time, where n is the size of the A-term [7]. Similarly, type inference
for the constrained type system is computable in O(r?) time [5]. The two
systems accept the same programs as a certain flow analysis [7].

In the following two sections we recall the definitions of the Amadio/Cardelli
type system and the constrained type system, and in Section 4 we prove our
result.

2 The Amadio/Cardelli type system

We first define the notions of type and term. Instead of writing types in the
syntax suggested above, we represent them as regular trees [2, 6]. Such trees
are in turn represented by terms.

Definition 2.1 Let ¥ = {—Int, L, T} be the ranked alphabet where — is
binary and Int, L, T are nullary. A type is a regular tree over X. A path from
the root of such a tree is a string over {0, 1}, where 0 indicates “left subtree,”
and 1 indicates “right subtree.” O

Definition 2.2 We represent a type by a term, that is, a partial function
t:{0,1}* - %

with domain D(t) where ¢ maps each path from the root of the type to the
symbol at the end of the path. The set of all such terms is denoted 7y,. O

Types are ordered by the subtype relation <, as follows.

Definition 2.3 The parity of a € {0,1}* is the number mod 2 of zeros in
a. The parity of « is denoted wa. A string « is said to be even if ra = 0
and odd if rta = 1. Let <g be the partial order on ¥ given by

1 <g— and — <y 7T and
1 SO Int and Int SO T.

Let < be its reverse

T<y— and — <; 1 and
T Sl Int and Int Sl 1.

For s,t € Ty, define s <t if s(a) <, t(a) for all @ € D(s) ND(t). O

Kozen et al. [6] showed that the relation < is equivalent to the order
defined by Amadio and Cardelli [2]. The relation < is a partial order, and if
s—=1<s =t then s’ <sand t <t [2, 6]

Next, we present the type rules. If £ is a A-term, t is a type, and A is a
type environment, i.e., a partial function assigning types to variables, then
the judgment A F E : ¢ means that £ has the type ¢ in the environment A.
Formally, this holds when the judgment is derivable using the following six
rules:

AFO0:Int (1)
AF E :lnt 2)

Al succ £ : Int
Abz:t (provided A(z) =1) (3)

Alx — s|F E:t
Az B :s—t
AFE:s—1t AFF:s

AR EF :t
AFE:s s<t (6)
AR FE:t

The first five rules are the usual rules for simple types, and the last rule is
the rule of subsumption.
The type system has the subject reduction property, that is, if A E : ¢ is

derivable, and £ -reduces to E’, then A+ E': ¢ is derivable. This is proved
by straightforward induction on the structure of the derivation of A E : ¢.

3 Constrained Types

We begin with defining what will be called a simple type. The set of simple
types is generated by the following grammar:

t =ty =ty |Int|v

4

Here, v is a type variable.

Definition 3.1 A constraint system is a finite set of constraints of the form
t < t', where t,t" are simple types.
A constraint system C' is closed if the following two conditions hold.

o Ifs -1 <s —tisin C, then s’ < s and t <t arein C.
o If r <s and s <t both are in C', then r <t isin C.

It C' is a constraint system, then the closure of C is the smallest closed
constraint system which contains C. If C,C’ are two constraint systems, we
denote by C'& C’ the closure of C' U C".

A constraint system is consistent if it does not contain constraints of the
forms Int <t — t' or t — t' < Int, where t,t" are simple types. O

A constrained type is of the form ¢ \ C where ¢ is a simple type and C
is a closed constraint system. Constrained types are ordered by the subtype
relation <, as follows.

Definition 3.2 For constrained types ¢ \ C and t' \ C’, define t \ C <
t'\ C"if either CW{t <t'} CC" ort=1tand C C (. O

Notice that < is a partial order.

Next, we present the type rules. If F is a A-term, ¢t \ C is a constrained
type, and A is a simple type environment, i.e., a partial function assigning
simple types to variables, then the judgment A F. FE : ¢\ C holds when it is
derivable using the following six rules:

Ab.0:Int\ 0 (7)

AF. E:Int\ C g

Al succ E:Int\ C Q
AF.z:t\ 0 (provided A(z) =1) (9)

Alx «— s]F. E:t\ C
A A E:s =1\ C

AF. E:s—t\Cy AF.F:s\ Oy
AF. EF :t\ Cr W0y

5

AR Et\C t\C<at\
Ab. E '\ C’

Notice that there is a rule for each syntactic construct and also a subsumption
rule. It is the subsumption rule that makes it possible to add constraints to
the constraint set. If AF. E : ¢\ C is derivable and C is consistent, then
we say that £ has the constrained type ¢ \ C in the environment A. Notice
that the existence of a derivation of A ., £ : ¢\ C does not imply that F
is typable, since C' need not be consistent. In the proof of Lemma 4.2 below
we will prove that certain derivations exist without considering the issue of
consistency.

(12)

Soundness of a more general set of rules than (7)—(12) is established in
[5] by subject reduction, which establishes that ift A F. £ : ¢\ C and C
is consistent, execution of £ will not result in type errors. Other forms of
constrained type are presented in [1, 3].

4 Equivalence

We now establish that the Amadio/Cardelli type system and the constrained
type system are equivalent in power. To prove the result independently would
be a significant effort, but using facts already proven in [7] and [5], it is not
difficult.

Given a A-term F, we now describe how to generate a certain constraint
system, found in [7]. Assume that £ has been a-converted so that all bound
variables are distinct. Let Xp be a set of type variables consisting of one
type variable (x) for each A-variable z occurring in F, and let Yy be a set of
variables disjoint from X consisting of one variable [F] for each occurrence
of a subterm F' of E. (The notation [F] is ambiguous because there may be
more than one occurrence of F' in E. However, it will always be clear from
context which occurrence is meant.) The following constraint system uses
Xg U Yg as type variables.

e for every occurrence in F of a subterm of the form 0, the inequality

Int < [0] ;

e for every occurrence in E of a subterm of the form succ F, the two

inequalities

Int

[£]

[succ F1]

<
< Int;

e for every occurrence in F of a subterm of the form Az.F', the inequality

() = [F] < [Ma.F];

e for every occurrence in F of a subterm of the form G'H, the inequality

[¢]T < [H] — [GH];

e for every occurrence in E of a A-variable x, the inequality
(z) < [=].

Denote by T'(FE) the system of constraints generated from £ in this fashion.
The closure of T'(E) will be written T'(E).

If C is a constraint system and ¢ is a function that maps the type variables
used in C' to elements of Ty such that all constraints are satisfied, then ¢ is
a solution of C'. We say that C is solvable if it has a solution.

Theorem 4.1 For a A-term E, the following two conditions are equivalent:
1. E is typable in the Amadio/Cardelli type system.

2. T(E) is consistent.

Proof. In [7] there is a notion of closure which we here will call restricted
closure. It is defined as follows. A constraint system C' is restricted-closed if
the following two conditions hold.

o Ifs—-t<s —t'isin C, then s’ <sand t <t arein C.

o If r <wvand v <t both are in C, then r <t isin C.

Here, v is a type variable. If (' is a constraint system, then the restricted
closure of C' is the smallest restricted-closed constraint system which contains
C'. The restriction is to close only under transitivity through variables. The
different definitions of closure are solely an artifact of slight differences of
approach in the two papers [5, 7].

We will prove that the following five properties are equivalent:

1. E is typable in the Amadio/Cardelli type system.
2. The restricted closure of T'(F) is solvable.

3. The restricted closure of T'(F) is consistent.

4. T(E) is solvable.

5. T(E) is consistent.

In [7] it is proved that (1), (2), and (3) are equivalent.

To prove (2) = (4), suppose the restricted closure of T'(E) has solution
@. Then also T'(E) has solution ¢, and since the rules that define the closure
of a constraint system preserve solutions, T'(£) has solution ¢.

It is immediate that (4) = (5), since no inconsistent constraint set can
be solvable. Finally, since the restricted closure of T'(E) is a subset of T(E),
we have that (5) = (3). O

For a A-term F, let Ag be the simple type environment which maps each
A-variable x occurring in £ to (z).

Lemma 4.2 For a M-term E, we can derive Ag . E : [E] \ T(E).

Proof. We can prove the following stronger property. For a A-term £, we
can for every subterm F of E derive Ag . F : [F] \ T(E). This is proved
by induction on the structure of F'.

In the base case, consider first ' = 0. We have that Ag F. 0 : Int \ 0
is derivable. Moreover, the constraint Int < [0] is in 7(F). Thus, Int \ § <
[0]\ T(E), so Ag t.0:[0] \ T(E) is derivable. Consider then F' = z. We
have that Ag F. z : (z) \ 0 is derivable. Moreover, the constraint (z) < [z]
is in T(E). Thus (z) \ 0 < [z] \ T(E), so Ag .z : [z] \ T(E) is derivable.

In the induction step, consider first ' = succ G. By the induction hy-
pothesis, we have that Ap . G : [G] \ T(E) is derivable. Moreover, the

8

constraint [G] < Int is in T(E). Thus, [G] \ T(E) < Int \ T(E), so
Ag F. G Int \ T(E) is derivable. From rule (8) we get that Ag . succ G :
Int \ T(E) is derivable. Also the constraint Int < [succ G] is in T(E). Thus,
Int \ T(E) < [succ G] \ T(E), so Ag F. succ G : [succ G| \ T(E) is
derivable.

Consider then F' = Az.G. By the induction hypothesis, we have that
Ap b, G: [G] \ T(E) is derivable. Noting that Ap = Ag[z « (z)], we get
from rule (10) that Ag F. Az.G : (z) — [G] \ T(E) is derivable. Moreover,
the constraint (z) — [G] < [Az.G] is in T(E). Thus, (z) — [G] \ T(E) <
[MNe.G]\ T(E), so Ag b. \z.G : [MAz.G] \ T(E) is derivable.

Finally, consider ' = GH. By the induction hypothesis, we have that
both A k. G : [G] \ T(E) and Ag . H : [H] \ T(F) are deriv-
able. Moreover, the constraint [G] < [H]] — [GH] is in T(E). Thus,
[GI\T(E) Q[H] — [GH]\ T(E), so Az + G : [H] — [GH] \ T(E) is
derivable. From rule (11) we get that Ag . GH : [GH] \ T(E) is derivable.

O

Theorem 4.3 For a A-term E, if T(E) is consistent, then E is typable in
the constrained type system.

Proof. Immediate from Lemma 4.2. a

Together, Theorem 4.1 and 4.3 show that if £ is typable in the Ama-
dio/Cardelli type system, then it is also typable in the constrained type
system.

To prove the converse, we first present a new set of type rules, taken from
[5]. If Eis a A-term, ¢t \ C is a constrained type where C is a constraint
set, and A is a simple type environment, i.e., a partial function assigning
simple types to variables, then the judgment A t; F : ¢\ C holds when it is
derivable using the following five rules:

AF;0:Int\ 0 (13)
Ab;succ £ :Int\ C W {t < Int}
AF;z:t\ 0 (provided A(z) =1) (15)

Alz — v E:t\ C

1
A Az E:v—t\C (16)

9

AFZEtl\Cl A|_2Ft2\02
AFZEFU\ClL‘UCQL‘U{tlth—)U}
In both rule (16) and rule (17), v is a type variable. Notice that there is
a rule for each syntactic construct but no subsumption rule. It is clear by

inspection that there is at most one typing derivation for each term £ modulo
names chosen for fresh variables. This set of rules thus serves to define an

(17)

inference algorithm, which we may show is complete.

Theorem 4.4 [f A, E :t\ C is derivable and C is consistent, then there
exists a constrained type t' \ C' where C' is consistent, such that A F; E :
t'\ C' is derivable.

Proof. See [5]. O

Theorem 4.5 [f At; E :t\ C is derivable and C is consistent, then T(E)

15 consistent.

Proof. Consider a derivation of AF; £ : ¢\ C, where C is consistent. Let
X =Y denote the two constraints X <Y and Y < X. Define the constraint
system D as follows.

e For every occurrence of a subterm F of F, find the unique judgment
in the derivation of A F; £ : t \ C which involves F, and let that
judgment be of the form A" F; F': '\ C’. Add the constraint [F] = ¢
to D.

e For every occurrence of a subterm GH in F, find the associated judg-
ment in the derivation of A F; £ : t \ C of the form A’ ; GH :
v\ C'W{t; <ty — v}, where v is a type variable. Add the constraint
[G] < [H] — [GH] to D.

e For every A-variable x occurring in £, find the judgment in the deriva-
tionof AF; £ :t\ C which involves the abstraction which binds z, and
let that judgment be of the form A’ F; Az.F' : v — t \ C', where v is
a type variable. Add the constraints (z) = v and (z) — [F] < [Az.F]
to D.

10

Notice that C'W D is consistent: the first operation above clearly preserves
consistency. The second operation also preserves consistency, as the new
constraints in the closure will always mirror existing constraints, with [G]
replacing t1, [H] replacing ¢y, and [H] replacing v. The third operation
preserves consistency by a similar argument.

Thus, since T(E) is clearly a subset of C' & D, T(E) is consistent. a

Together, Theorem 4.1, 4.4, and 4.5 show that if £ is typable in the
constrained type system, then it is also typable in the Amadio/Cardelli type
system.

In summary, we have proved our result.

Corollary 4.6 A A-term E is typable in the Amadio/Cardelli type system if
and only if it is typable in the constrained type system.

5 Conclusion

The Amadio/Cardelli type system [2], a certain kind of flow analysis [7],
and a simple constrained type system [5] accept the same programs, unifying
three different views of typing.

Acknowledgments We thank Trevor Jim for helpful comments on a draft
of the paper. The first author was supported by BRICS (Basic Research
in Computer Science, Centre of the Danish National Research Foundation).
The second author was partially supported by NSF grants CCR-9301340 and
CCR-9312433, and ONR grant N00014-95-1-0999.

References

[1] Alexander Aiken and Edward Wimmers. Type inclusion constraints and
type inference. In Proc. Conference on Functional Programming Lan-
guages and Computer Architecture, pages 31-41, 1993.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4):575-631,
1993. Also in Proc. POPL91.

11

3]

[4]

Pavel Curtis. Constrained quantification in polymorphic type analysis.

Technical Report CSL-90-1, XEROX Palo Alto Research Center, 1990.

J. Fifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference
for objects. In Proc. OOPSLA’95, ACM SIGPLAN Tenth Annual Con-
ference on Object-Oriented Programming Systems, Languages and Appli-
cations, 1995.

J. Fifrig, S. Smith, and V. Trifonov. Type inference for recursively con-
strained types and it application to OOP. In Proc. Mathematical Foun-
dations of Programming Semantics, 1995. To appear.

Dexter Kozen, Jens Palsberg, and Michael 1. Schwartzbach. Effi-
cient recursive subtyping. Mathematical Structures in Computer Sci-
ence, 5(1):113-125, 1995. Also in Proc. POPL’93, Twentieth Annual
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 419-428, Charleston, South Carolina, January 1993.

Jens Palsberg and Patrick M. O’Keefe. A type system equivalent to
flow analysis. ACM Transactions on Programming Languages and Sys-
tems, 17(4):576-599, July 1995. Also in Proc. POPL’95, 22nd An-
nual SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 367-378, San Francisco, California, January 1995.

12

