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Abstract. The basic idea behind improving the quality of a monovariant con-
trol flow analysis such as OCFA is the conceptpolyvariantanalyses such as
Agesen’s Cartesian Product Algorithm (CPA) and ShiveiSFA. In this paper

we develop a novel framework for polyvariant flow analysis based on Aiken-
Wimmers constrained type theory. We develop instantiations of our framework
to formalize various polyvariant algorithms, includin@FA and CPA. With our
CPA formalization, we show the call-graph based termination condition for CPA
will not always guarantee termination. We then develop a novel termination con-
dition and prove it indeed leads to a terminating algorithm. Additionally, we show
how data polymorphism can be modeled in the framework, by defining a simple
extension to CPA that incorporates data polymorphism.

1 Introduction

The basic idea behind improving the precision of a simple control flow analysis such
as OCFA is the concept glolyvariantanalysis, also known dtow splitting For bet-

ter analysis precision, the definition of a polymorphic function is re-analyzed multiple
times with respect to different application contexts. The original polyvariant generaliza-
tion of the monovariant OCFA control flow algorithm is th€FA algorithm, defined

by Shivers [17]. This generalization however has been shown to be not so effective: the
values ofn needed to obtain more accurate analyses are usually beyond the realm of the
easily computable, and even 1CFA can be quite slow to compute [19]. Better notions of
polyvariant analysis have been developed. In particular, Agesen’s CPA [1, 2] analyzes
programs with parametric polymorphism in an efficient and adaptive manner.

In this paper we develop a general framework for polyvariant flow analysis with
Aiken-Wimmers constrained types [3]. We represent each function definition with a
polymorphic constrained type scheme of fofmt. ¢t — 7 \ C). The subtyping con-
straint setC bound in the type scheme captures the flow corresponding to the function
body. Each re-analysis of the function is realized by a new instantiation of the type
scheme.

There have recently been several frameworks developed for polyvariant flow anal-
ysis, in terms of union and intersection types [16], abstract interpretation [13], flow
graphs [12], and more implementation-centric [10]. Our purpose in designing a new

* Partial funding provided by NSF grant CCR-9619843



framework is not primarily to give “yet another framework” for polyvariant flow analy-

sis, but to develop a framework particularly useful for the development of new polyvari-
ant analyses, and for improving on implementations of existing analyses. We will give
an example of a new analysis developed within the framework, Data-Adaptive CPA,
which extends CPA to incorporate data polymorphism. There also are implementation
advantages obtained by basing analyses on polymorphic constrained types. Compared
to the flow graph based approach used in other implementations of flow analyses [2, 10,
14], our framework has several advantages: using techniques described in [8, 15], con-
strained types can be simplified on-the-fly and garbage collection of unreachable con-
straints can be performed as well, leading to more efficient analyses; and, re-analysis
of a function in a different polyvariant context is also realized by instantiation of the
function’s constrained type scheme, and does not require re-analysis of the function
body.

This paper presents the first proposal to use constrained type schemes to model
polyvariance; there are several other related approaches in the literature. Palsberg and
Pavlopoulou [16] develop an elegant framework for polyvariant analyses in a type sys-
tem with union/intersection types and subtyping. There are also subtype-free type-based
realizations of polymorphism which can be adapted to polyvariant flow analysis. Let-
polymorphism is the classic form of polymorphism used in type inference for subtype-
free languages, and has been adapted to constrained types in [3, 7], as well as directly
in the flow analysis setting by Wright and Jagannathan [19]. Another representation of
polymorphism found in subtype-free languages is via rank-2 intersection types [11],
which has also been applied to polyvariant flow analysis [4]. The Church group has de-
veloped type systems of union/intersection types decorated with flow labels to indicate
the flow information [18].

The form of polyvariance we use is quite general: we show how @A, and
other analyses may be expressed in the framewokktype is given to each function in
the program, and for every different call site and each different type of argument value
the function is applied to, a new contour (re-analysis of the function via instantiation
of theV type) is possible. The framework is flexible in how contours are generated: a
completely new contour can be assigned for an particular argument type applied to the
function, or for that argument type it can share a pre-existing contour. For example,
OCFA is the strategy which uses exactly one contour for every function.

One difficult problem for CPA is the issue of termination: without a termination
check, the analysis may loop forever on some programs, producing infinitely many con-
tours. We develop a termination condition which detects a certain kind of self-referential
flow in the constraints and prove that by merging some contours in this case, non-
termination is prevented and the analysis is implementable. Our termination condition
is different from the call-graph based condition commonly used in other algorithms,
which we show will not guarantee termination in all cases.

We also aim here to model polyvariant algorithms capable of handitg poly-
morphism the ability of an imperative variable to hold values of different types at run-
time. Data polymorphism arises quite frequently in object-oriented programming, es-
pecially with container classes, and it poses special problems for flow analysis. The one
precise algorithm for detecting data polymorphism is the iterative flow analysis (IFA)



of Plevyak and Chien [14]. We present a simple non-iterative algorithm, Data-Adaptive
CPA, based on an approach distinct from that of IFA.

2 A Framework for Polyvariant Flow Analysis

This section presents the framework of polyvariant constrained type inference. In the
next section we instantiate the framework for particular analyses.

2.1 The Language

The language we study here is an extension to the language used in Palsberg and
Pavlopoulou’s union/intersection type framework for flow analysis [16], adding mu-
table state so we can model data polymorphism. We believe the concepts of current
paper should scale with relative ease to languages with records, objects, classes, and
other features, as illustrated in [7, 6].

Definition 21 (The language):

e=xz|n|succe|ifOcee|Az.c|ece|new|e:=¢e|le]|e; e

This is a standard call-by-value lambda calculus extended with reference cells. Ex-
ecution of anew expression creates a fresh, uninitialized reference cell. Wereise
because it models the memory creation mode of languages like Java and C++, where

uninitialized references are routinely created. Recursive definitions may be constructed
in this language via th&-combinator.

2.2 The Types

Our basis is an Aiken-Wimmers-style constraint system [3]; in particular it is most
closely derived from the system described in [7], which combines constraints and mu-
table state.

Definition 22 (Types): The type grammar is as follows.

T € Type n=t]|7v|read t| write T | t1 — t2
t € TypeVar D ImpTypeVar

U € ImpTypeVar

t € TypeVarSet = Pgan(TypeVar)

TV € ValueType s=int | (Ve t -7\ C)|refu

71 <: T2 € Constraint

c € ConstraintSet = P, (Constraint)

The types for the most part are standard. Function uses (call sites) are given type
t; — to. ValueType are the types for data valuasf « is the type for a cell whose
content has type. We distinguish imperative type variablesce ImpTypeVar for
the presentation of data polymorphism. Read and write operations on reference cells
are represented with typesad t andwrite 7 respectively. Functions are given poly-
morphic typegV t. ¢ — 7\ C), wheret is the type variable for the formal argument,
7 is the return type( is the set of constraints bound in this type scheme,taisdhe
set of bound type variables. Such types are also referrgdygses or closure types in
the paper.
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Fig. 1. Type inference rules

2.3 The Type Inference Rules

We present the type inference rules in Figure 1. A type environmesta mapping

from program variables to type variables. Given a type environmetite proof system
assigns a type to expressiervia the type judgmentl + e : 7\ C, wherer is

the type fore, andC is the set of constraints which models the flow paths.ifiVe
abbreviateA F e : 7\ Cas F e : 7\ C whenAisempty. The rules are
deterministic except that nondeterminism may arise in the choice of type variables. We
restrict type derivations to be of a form where fresh type variables are used whenever
it is possible. With this restriction, type inference is trivially decidable and is unique
modulo choice of type variable names.

Definition 23 (Type inference algorithm): For closed expression its inferred type
is7\ C providedt e : 7\ C.

The intuition behind those inference rules is that a subtyping constraiat:
indicates a potential flow from expressions of typeto expressions of type,. The
rules generally follow standard presentations of Aiken-Wimmer constrained type sys-
tem, except for the (Abs) and cell typing rules. Detailed descriptions of other rules
could be found in [7,3]. The (Abs) rule assigns each function a polymorphic type
(V t.t — 7\ C). In this rule, Free Type Var(-) is a function that extracts free type
variables{ collects all the type variables generated when the inference is applied to the



function body, and” collects all the constraints corresponding to the function body.
The manner in whicly type schemes are formed is similar to standard polymorphic
constrained type systems, but the significant difference here is that every function is
given aVv type. By contrast, in a system based on let-polymorphism] ¢heconstruct
dictates wher#' types are introduced.

The (New) rule assigns the reference cell tyeé€ «, with u, the type of the cell
content, initially unconstrained. In the (Read) rulead ¢ is the type for a cell whose
read result is of type. In the (Write) rule,write 5 is the type for a cell assigned with
a value of typers.

We take an intensional view of types: two types are equivalent if and only if they are
syntactically identical. In particulay, types corresponding to different functions in the
program are always different, even though they mighthariants. This is because we
wish to distinguish different functions in the analysis to obtain precise flow properties.
For type soundness properties, an extensional view could be taken.

We illustrate the inference rules with the example studied in [16]:

Ey = (Af.succ ((f f)0) (1£0 n (Az.z) (\y.Az.2))

To ease presentation, each program variable is inferred with a type variable having
exactly the same name. We have

F (Mfsuce (£ £)0) = m\{}, wherery = (V {f,t1,ta, ta, ta}.f — int \ {f <:

t1 — tz,f <ity,tg <:lgz — t4,int <:t3,t4 <: ll’lt}),

F (Az.z) : m\{}, wherer, = (V{z}.2 — 2\{}),

F (AwAzz) o \{}, wherer, = (V {y}y — (7 {z}.2 — 2\ {D\(D).

F By : otz \{int <:int, 7, <:t5,7, <t t5,75 <:tg — t7,t5 <:tg}

2.4 Computation of the Closure

The inference algorithm applied to programesults in a type judgmerit e : 7\ C.

For a flow analysis, we need to generate all the possible data-flow and control-flow paths
and propagate value types along all the data-flow paths. This is achieved by applying
the closure rules of Figure 2 10, propagating information via deduction rules on the
subtyping constraints.

The rule (Trans) is the transitivity rule which models run-time data flow by propa-
gating value types forward along flow paths. The (Read) closure rule applies when a
read operation is applied on a cell of typef u, and the reading result is of typeBy
constraintu <: t, the cell content flows to the reading result. The (Write) closure rule
applies when a write operation is applied on a cell of typf u, and a value of type
is assigned to the cell. By constraint<: ¢, the value flows to the content of the cell.
With (Read) and (Write) rules together, any value assigned to a cell flows to the cell's
reading result. Flanagan [9] uses a related set of rules for references and was the source
of the idea for us.

The most important closure rule is (Fun), which perfoinalimination. The con-
straint(v ¢. t — 7 \ C) <: t; — t9 indicates a function flowing to a call site, where
(Vi.t — 7\ C)is the type for the function and — ¢, is the type representing the
call site. The constrainty <: ¢; means that a value of type flows in as the actual
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Fig. 2. Constraint Closure rules

argument. At run-time, upon each function application, all local variables of the func-
tion are allocated fresh locations on the stack. To model this behaviour in the analysis,
arenaming® € TypeVar - TypeVar is applied to type variables ih The partial
function © is extended to types, constraints, and constraint sets in the usual manner.
O(t) for t ¢ t is defined to return. We call©(7) aninstantiationof 7. Following the
terminology of ShivershCFA [17], we call a renamin@ acontour. TheV is eliminated

from (V ¢.t — 7\ C) by applying® to C. The (Fun) rule then generates additional
constraints to capture the flow from the actual argumed the formal argumere®(¢),

and from the return valu@(r) to the application resutt. The (Fun) rule is parameter-

ized by functionPoly € Constraint x ValueType — (TypeVar = TypeVar),

which decides for this particular function, call site, and actual argument type, which
contour is to be used.é., created or reused). Providing a concraigy instantiates the
framework to give a concrete algorithm. For example, the monovariant analysis 0CFA
is defined by lettin@Poly always return the identity renaming. This particular example
shows howPoly may reuse existing contours. The differing analyses are defined by
differing Poly which use different strategies for sharing contours. In the next section
we show how this works by presenting some particBlry.

Definition 24 (Closure): For a constraint sat’, Closurep,1y(C') is the least superset
of C closed under the closure rules of Figure 2.

This closure is well-defined since the rules can be seen to induce a monotone func-
tion on constraint sets. By this definition, sorhely may produce infinite closures
since infinitely many contours may be created. Such analyses are still worthy of study
even though they are usually unimplementable.

Definition 25 (Flow Analysis): Define Analysisp,,,(e) = Closurepo1y(C), where the
inference algorithm infers- e : 7\ C.

The output of an analysis is a set of constraints, which is the closure of the constraint
set generated by the inference rules. The closure contains complete flow information
about the program, various program properties can be deduced from it.

Definition 26 (Type-Checking): A programe is well-typed iff Analysisp,(e) con-
tains no immediately type-contradictory constraints suckefis: <: t — t'.



For example, analyzing prograsucc (Az.x) would generate a type-contradictory
constraint(v {z}.z — z\{}) <: int, which indicates an type error. A computation
state isvrongif computation cannot continue due to a type error. Our type system does
not statically check for errors due to reading uninitialized cells.

To illustrate how the results of a conventional control flow analysis can be obtained
in our framework, we use the fact that by the structure of the inference rules, évery
type in the closure corresponds to a unique lambda abstraction in the program.

Definition 27 (Control Flow Analysis): For an expression in the program, ife is
assigned with type by the inference rules, the function correspondingwta’. ¢’ —
7'\ ") is considered flowing te, if eitherr = (V #/. ¢ — 7/ \ C')or (V t'. t' —
T7\CO)<:te Analysispe1y(€), and eitherr = ¢ or ¢ is an instantiation of.

The above definition includes two cases: eithés directly assigned with & type,
in this case: is a lambda abstraction which trivially flows to itself; ©is assigned with
a type variable by the inference rules, and the type variable or an instantiation of it has
aVv type as lower bound.

A subject reduction property for our type system can be established, with a proof
similar to the one in [7]. The subject reduction property implies the type soundness and
flow soundness of the framework.

Theorem 28 (Subject Reduction, Type Soundness, Flow Soundness)t. The type
system has a subject reduction property;
2. A well-typed prograne cannot govrongduring execution;
3. If an expression evaluates to a closure value of a function, the function is considered
flowing to the expression by the the control flow analysis.

The soundness of the framework implies that any analysis defined as an instantiation
of the framework is also sound.

3 Instantiating the Framework

In this section we present various polyvariant algorithms as instantiations of our frame-
work.

3.1 nCFA Instantiation

In Shivers’nCFA analysis [17], each function application (call) is associated with a
call-string of length at most. The call-string contains the last or fewer calls on

the call-path leading to this application. Applications of the same function share the
same contour (i.e., analysis of the function) if they have the same call-string. To present
nCFA in our framework, type variables are defined with superscripts that denote the
call-string:

«a € Identifier
s € Superscript = Identifier List
t € TypeVar w=a’

We use the following list notation: The empty listfi§ [a1, ..., o] is @ list of m
elements]; @ I, appends listé; andl,, andi(1..n) is the list consisting of the first



min(n, length(l)) elements of list. Each type variable is tagged with a call-string

s. All type variables generated by the inference rules have empty lists as superscripts.
By the inference rule (Appl), a call site is inferred with a typ@ — a[Q], we useas

to identify this call site, thus a call-string is a list of such identifiers. All bound type
variables of & type have empty list superscripts. When thquantifier is eliminated

by the (Fun) closure rule, those bound type variables are renamed by changing the
superscripts from empty lists to the appropriate call-strings.

Definition 31 (nCFA Algorithm): ThenCFA algorithm is defined as the instantiation
of the framework wittPoly = CFA, where

CFA((Vt.t — 7\ C) <:t1 — a3, 7v) = O, where for eacl! € 7,
O(all) = o*' ,wheres’ = (jaz] @ s2)(1..n)

It can be shown by induction that is the call-string for applicatiofv ¢. ¢t —

7\ C) <: t1 — «52. The definition 0f© ensures that applications of the same function
share the same contour if and only if they have the same call-string.

Not only isnCFA inefficient, but even for large it may be imprecise. Applying
nCFA to programFy, since(\f ...) has only one application, the (Fun) rule generates
only one contou© for this function, resulting irr, <: ©(f) andr, <: O(f). This
means both{Az.x) and (Ay.\z.z) flow to f, and at the application sit¢ f there are
four applications. One of thenfA\xz.z) applying to(\y.A\z.z) leads to a type error:
(V{z}.z — 2\{}) <: int. HencenCFA fails to type-checl&; for arbitraryn.

3.2 Idealized CPA

The Cartesian Product Algorithm (CPA) [1, 2] is a concrete type inference algorithm
for object-oriented languages. For a message sending expression, CPA computes the
cartesian product of the types for the actual arguments. For each element of the cartesian
product, the method body is analyzed exactly once with one contour generated. The
calling-contexts of a method are partitioned by the cartesian product, rather than by
call-strings as imCFA. In our language, each function has only one argument. For
each function, CPA generates exactly one contour for each distinct argument type that
the function may be applied to. Without a termination check, CPA may fail to terminate
for some programs. We first present an idealized CPA which may produce an infinite
closure, and in Section 5 show how a terminating CPA analysis may be defined which
keeps the closure finite. To present CPA, type variables are defined with structure:

«a € Identifier
t € TypeVar :=a|a™

The inference rules are constrained to generate type variables without superscripts.

Definition 32 (Idealized CPA algorithm): The Idealized CPA algorithm is the instan-
tiation of the framework witlPoly = CPA, where

CPA(Vt.t— 1\ C)<:ti — ta2, 7v) = O, where for eaclx € ,0(a) = a™

The contour® are generated based on the actual argumentygadependent of
the application siteé; — ¢-. This is the opposite dEFA, which ignores the value type



v, and only uses the call site — 5. Given a particular function and its associated

v type in a program, this algorithm will generate a unique contdwelimination) for

each distinct value type the function is applied to. It however may share contours across
call sites. Agesen [2] presents convincing experimental evidence that the CPA approach
is both more efficient and more feasible thaDFA.

We now sketch what Idealized CPA will produce when applied to progfantven
though there is only one application site fovf . . .), it applies to two different actual
argument values. So, the (Fun) rule generates two con@uasd©- for (\f . ..) with
O1(f) = f™, 1 < fT,02(f) = f™v, 1, <: f7. At application sitef f, there would
be only two applications{Az.z) applying to itself and A\y.\z.z) applying to itself.

Thus the program is type-checked successfully.

4 Data Polymorphism

Data polymorphism is defined informally in [2] as the ability of an imperative program
variable to hold values of different types at run-time. In our language, a more precise
definition could be that cells created from a single imperative creation pointex-
pression) in the program could be assigned with run-time values of different types. CPA
addresses parametric polymorphism effectively, but may lose precision in the presence
of data polymorphism. For example, consider when CPA is applied to the program

Es = (Af.(Az. x :=0;succ 'z)(f1); (f2) := (A\y.y)) (A\z.new)

Function(A\y.y) has type(VY {y}.y — y\{}), and()\z.new) has type(V {z,u}.z —

ref u\{}). The two applications of \z.new) have same actual argument type,

S0 one contou® is shared by the two applications. At run-time the two applications
return two distinct cells, but in CPA closure, the two cells share fygfeu’ (assume
O(u) = u'), since there is only one contour fOhz.new). At run-time, one cell is
assigned with), and the other is assigned withy.y). The two assignments are both
reflected onu’ as constraintdnt <: « and (V {y}.y — y\{}) <: «/, as if there
were only one cell, which is assigned with values of two different types. This leads to
atype error(¥ {y}.y — y\{}) <: int. But if distinct contours were used for the two
applications of A\z.new), the two cells would have separate cell types and the program
would be type-checked.

This small example illustrates that data polymorphism is a problem that arises in a
function that contains a creation point{ew expression). Different applications of the
function may create different cells which are assigned with values of different types, a
precise analysis should disambiguate these cells by letting them have separate cell types.
To illustrate how data polymorphism can be modeled in our framework, we present a
refinement of CPA to give better precision in the analysis of data polymorphic programs.

Consider two applications of a single function. If the applications have same ac-
tual argument type, then CPA generates a single contour for them. But, if the two ap-
plications return separate mutable data structures at run-time, and the data structures
are modified differently after being returned from the two different applications, CPA
would lose precision by merging the data structures together. If two separate contours
were used for the two applications, the imprecision could be avoided. In the result



of CPA analysis, such a function has a return type which is a mutable data structure
with polymorphic contents. We call such functiodata-polymorphicln programks,
(A\z.new) is data-polymorphic, and the other functions are data-monomorphic.

Based on the above observation, our Data-Adaptive CPA algorithm is a two-pass
analysis. The first pass is just CPA. From the CPA closure, we detect a set of func-
tions which are possibly data-polymorphic. In the second pass, for data-polymorphic
functions, a distinct contour is generated éveryfunction application. In this way, im-
precision associated with data-polymorphic functions can be avoided; only CPA split-
ting is performed for data-monomorphic functions, avoiding generation of redundant
contours.

Mutable data structures with polymorphic contents are detected from the CPA clo-
sure with following definition:

Definition 41 (Data Polymorphic Types): Type 7 is data-polymorphic in constraint
setC if any of the following cases hold:

T=ref u, v <:u € C, T <:u € C,andrv; # Tw;

. T is type variablg, 7’ <: ¢t € C, andr’ is data-polymorphic ir;
. 7 = ref v andu is data-polymorphic irC;

7= (Vt.¢ -7\ C) andr is data-polymorphic irC.

»wWN R

The above definition is inductive. The first case is the base case, detecting cell
types with polymorphic contents. The second case declares a type variable as data-
polymorphic when it has a data polymorphic lower bound. The remaining two cases
are inductive cases based on the idea that a type is data-polymorphic if it has a data-
polymorphic component. Particularly, a closure type is declared as data-polymorphic
when the type of its return value is data-polymorphic. Note that, for purely functional
programs with no usage of cells, no types would be detected as data-polymorphic.

Recall that CPA type variables are either of the farror ™. We define an oper-
ation erase on type variables asrase(«) = «a, erase(a™) = «. And we extend it
naturally to types, definingrase(7) as the type with all superscripts erased from all
type variables inr. In particular,erase maps a closure type to the type for the lambda
abstraction in the program corresponding to the closure type, and it maps a cell type
to the type for the corresponding creation poidy expression) in the program. From
now on, we callv aninstantiationof erase(v).

Definition 42 (Data Polymorphic Functions): For function\z.e assigned with type
(V t.t — 7\ C) by the inference rules)z.e is a data-polymorphic function in
constraint se€" iff there appears’ in C’ s.t.erase(r') = T andr’ is data-polymorphic
inC’.

In the above definition we use the fact that every distinct function in the program
is given a unique typév t. t — 7 \ C) by the inference rules. The constraint set
(' is a flow analysis result of the program. The conditionse(7’) = T means that
the function\z.e may return a value of type’. Since7’ is data-polymorphic irC’,
we know that, according to analysis res@tt, the function may return mutable data
structures with polymorphic contents, and we declare it as a data-polymorphic function.



Definition 43 (Data-Adaptive CPA): For prograne, Data-Adaptive CPA is an instan-
tiation of the framework witlPoly = DCPA, where

DCPA((Vt.t — 7\ C) <:t1 — t2,7v) = O,where for eachy € ¢,
o' whered is a fresh identifierif erase(¥ 1.t — 7\ C) is type for
O(a) = a data-polymorphic function idnalysiscpa (€)

o™ otherwise

The second pass of Data-Adaptive CPA differs from CPA only when the function is
detected as data polymorphic in the closure obtained by the first CPA pass. In this case, a
new contour is always generated for every application. We now illustrate Data-Adaptive
CPA on programys. After the first CPA pass, we have

int <: ', (V{y}.y — y\{}) <: ') € Analysiscpa (E2)

Thus ' is data-polymorphic, and so isf «’. Since\z.new is inferred with type
(V {z,u}.z — ref u\{}) anderase(ref u') = ref u, A\z.new is a data-polymorphic
function. In the second pass, the two applications:ofiew have separate contours, and
the program type-checks.

We briefly sketch how Data-Adaptive CPA could be applied to data polymorphism
in object-oriented programming. We illustrate the ideas by assuming an encoding of
instance variables as cells, objects as records (which we expect can be added to our
language without great difficulty), classes as class functions, and object creation as
application of class functions. An example of such an encoding is presented in [7].

Consider applying such an encoding to the Java program fragment of Figure 3:
The twonew Box() expressions would be encoded as two applications of the class

class Box {
public Object content;
public void set(Object obj) {
content=obj;
}
public Object get() {
return content;
}
}

Box boxl=new Box(); boxl.set(new Integer(0));
Box box2=new Box(); box2.set(new Boolean(true));
. boxl.get() ...

Fig. 3. Java program exhibiting the need for data polymorphism

function for classBox. When CPA is applied, since the two applications always apply
to arguments of same type in any object encoding, the two applications share a single
contour. Thus the twBox instances share a same object type, and the analysis would



imprecisely conclude that the result béx1.get () includes object typ8oolean.

When Data-Adaptive CPA is applied, from the closure of the first CPA pass, the instance
variablecontent would be detected as being associated with a data-polymorphic cell
type. Since the class function for claBsx returns a object value withontent as

a component, the class function would be detected as a data-polymorphic function.
During the second pass, the two applications of the class function would have separate
contours, thus the two instancesBafx would have separate types and the imprecision
would be avoided.

For programs with much data polymorphism, Data-Adaptive CPA may become im-
practical as many functions are detected as data-polymorphic. Similar to Agesen’s CPA
implementation [2], a practical implementation should restrict the number of contours
generated.

Plevyak and Chien'’s iterative flow analysis (IFA) [14] uses an iterative approach for
precise analysis of data polymorphic programs. The first pass analyzes the program by
letting objects of the same class share the same object contour. Every pass detects a set
of confluence points (imprecise flow graph nodes where different data values merge)
based on the result of the previous pass, and generates more contours with aim to re-
solve the imprecision at confluence points. The iteration continues until a fixed-point is
reached. The advantage of IFA is that splitting is performed only when it is profitable,
yet every pass is a whole-program analysis and the number of passes needed could be
large. Use of declarative parametric polymorphism [5] to guide the analysis of data
polymorphism could be a completely different approach that also could be considered.

5 Terminating CPA Analyses

Any instantiation of our polyvariant framework terminates when only finitely many dis-
tinct contours are generated. ThEFA algorithms we defined terminate for arbitrary
programs since the number of call-strings of length no more thixfinite. Unfortu-
nately, the Idealized CPA and Data-Adaptive CPA algorithms fail to terminate for some
programs.

Agesen [2] develops various methods to detect recursion and avoid the generation
of infinitely many contours over recursive functions in his CPA implementation. One
approach is to construct a call-graph during analysis, and restrict the number of contours
generated along a cycle in the call-graph. However, for Idealized CPA, adding call-
graph cycle detection is not enough to ensure termination. Consider the program

Es = (Ac. c:=Azx.x;(Ad. ¢ := (\y. d y)) '¢) new

Its call-graph has only one edge: functipxc. . .) calls(Ad...). There is no cycle in

it. Consider running ldealized CPA on the program. For each value type lower bound of
of u (assume the cell has typef u), there is a contour generated for functiowi . . .).
At first the type forf, = (\z.z) becomes a lower bound of one contour is generated
for function (A\d. ..), and the type for closuré; = (\y.foy) becomes another lower
bound ofu. So another contour is generated far. . .), and the type for closuré, =

(My. f1y) also becomes a lower bound@fThis process would repeat forever, with an
infinite number of contours generated for functioni . . .). This example shows that
call-graph based approach cannot ensure the termination of Idealized CPA.



Here we present a novel approach that ensures the termination of CPA for arbitrary
programs. Our approach is based on the following observation: when Idealized CPA
fails to terminate for a program, there must be a cyclic dependency relation among
those functions having infinitely many contours. In the example, there exists such a
cyclic relation: function\y .. .) is lexically enclosed byAd. . .), and(Ad...) applies
to closure values corresponding (tdy . ..). If we detect such cycles and restrict the
number of contours generated for functions appearing in cycles, non-termination could
be avoided. To be precise, the key of our method is to construct a relation among value
types during closure computation. This relation is defined as:

Definition 51 (Flow Dependency=-): For constraint se€’, define=- as a relation
among value types such that if either

T <it—t T <iteCm=Nti.t1 511 \Ch)

or

Tv1 Occurs as a subterm dfv ¢2. t2 — 72 \ Ca), 702 = (V t2. t2 — 72 \ C2), 701 # T,
and there exists &€ t» such that appears irrv,

holds, thererase(mv,) = erase(rvz) in C.

The first case above defines a dependency when closurerty@pplies to value
type ruz. The second case defines a dependency when closurewypentains value
type rv; as a subterm, so that when a new contour is generated for closurevtyf@e
new value type is created whichis; with some of its free type variables renamed. If
Tv1 = TUg in C1, andC; C Cs, we haverv; = Tuy in Cy. Thus relation=- could be
incrementally computed along with the incremental closure computation. We abbreviate
v = Uz in C asTv; = v, WhenC refers to the current closure under computation.
We call vy, = Tuwo,..., 70, = Tv1 @ cycle, and we writew; = 1v, if there exists a
sequencev; = Tuvg,...,TUp—1 = TUp.

Definition 52 (Terminating CPA): Terminating CPA is the instantiation of the frame-
work obtained by definingoly as:

Poly((Vi.t — 7\ C) <:t1 — t2, ") = O, where for eachy € 7,
O(a) {a”’/’“(”’/) if ems.e(ﬂ)’) = erase(Vi.t — 7\ C))
a™ otherwise

The new algorithm differs from Idealized CPA in just one case: when a closure of
type (V .t — 7 \ C) is applied to argument typev’ and we haveerase(mv’) =
erase((V t. t — 7 \ C)) in the current closure, then by the definition-ef, there
would be a cycleerase(mv’) = erase((¥ .t — 7 \ C)) = erase(rv’). In this
case, instead of renaming type variable$ as in Idealized CPA, they are renamed to
a form only dependent o#rase(7v’). In this way, even ifV ¢. ¢ — 7\ C) applies to
different types which are different instantiationseofise(mv’), there is only one contour
generated for them. We will prove shortly that this will ensure termination of the closure
computation.

Applying the algorithm to exampl&;, suppose that, by the inference rule (Abs),
function(Ad. . .) has typer, and function(\y . . .) has typer,. Since(Ad. . .) lexically



encloseg)\y . ..), we haver, = 74; and, sincgd. . .) applies to closures @f\y . . .),
we also have; = 7,. Thus a cycle is detected, only two contours are generated for
(M\d...), and the algorithm terminates.

Theorem 53 (Termination): The Terminating CPA analysis terminates for arbitrary
programs.

Proof: Suppose not,e., for some program, its Terminating CPA closurecontains
aV type tyy which has an infinite number of contours. Then, there must exist at least
onerv; S.t. Ty takes as arguments an infinite number of instantiations-@fe (v, ),
and an infinite number of contours are generated for those applications. To have an
infinite number of instantiations ofrase(7v;), there must exist & type vy S.t. vy
containserase (v ) as a sub-term, every new contourro$ causes the generation of a
new instantiation otrase (v, ), andrv, has an infinite number of contours. Repeating
this process gives an infinite sequentese(Tv), erase(1vy), . . . erase(Tv;) . .. where
for eachi, Tue,; has infinite number of contours when applying to instantiations of
erase(Tuaxit1), anderase(rv;) = erase(rv;11). Since the program is finite, there are
finitely many erase(v) and there must be a cycle in the sequence. Thus, there gxists
S.t. erase(Tva.;) = erase(Tva.jr1) = erase(Tva. ;) andTua,; has an infinite number
of contours for applying to instantiations efase(rva.;+1). But, by the definition of
Poly for Terminating CPA, this is impossible. m]

A terminating Data-Adaptive CPA analysis can be similarly defined except that,
besides cycles in the Flow Dependency relation, cycles in call-graph also need to be
detected.

6 Conclusions

We have defined a polymorphic constrained type-based framework for polyvariant flow
analysis. Some particular contributions include: showing how a type system with para-
metric polymorphism may be used to model polyvariance as well as data polymor-
phism; modeling:CFA and CPA in our framework; a refinement of CPA in the pres-
ence of data polymorphism; and, an approach to ensure the termination of CPA-style
analyses.
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