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Constraint-based type inference infers types with subtyping constraints. Such types can cap-
ture detailed data and control flow information about the analyzed program. In the presence
of polymorphism, existing constraint-based type inference algorithms sacrifice much precision for
efficiency. This paper presents both theoretical and practical results on developing precise and
efficient polymorphic constraint-based type inference for object-oriented languages.

We develop a novel theoretical framework for polymorphic constraint-based type inference. A
concrete type inference algorithm can be obtained by instantiating the framework with a par-
ticular strategy for handling polymorphism. We define well-known algorithms such as Shivers’
nCFA and Agesen’s Cartesian Product Algorithm (CPA) as instantiations of the framework. We

prove the soundness of the framework, which entails the soundness of every algorithm defined
as an instantiation of the framework. Using the framework, we develop a novel algorithm, Data
Polymorphic CPA (DCPA), which extends Agesen’s CPA Algorithm to achieve high precision in
the presence of Data Polymorphism.

We further study the construction of practical constraint-based type inference systems for
realistic programming languages. We have constructed a type inference system for the full Java
language. The system includes implementations of the 0CFA, CPA and DCPA algorithms, and it
incorporates a number of novel implementation techniques for achieving scalability. The system
is used to statically verify the correctness of Java downcasts. Benchmark results on realistic Java
applications show that the DCPA algorithm has good precision and efficiency: it is significantly
more accurate than existing algorithms and its efficiency is comparable to CPA.

Categories and Subject Descriptors: H.4.0 [Information Systems Applications]: General

General Terms: Algorithms, Languages, Performance, Theory

Additional Key Words and Phrases: constraint-based type inference, type systems, polyvariance,
program analysis, Java

1. INTRODUCTION

Constraint-based type inference is a method for automatically inferring an expres-
sive form of type consisting of subtyping constraints. A subtyping constraint is
of form τ1 <: τ2, meaning that type τ1 is a subtype of τ2. Intuitively, each type
represents a set of data values, and type τ1 is a subtype of type τ2 if the value
set represented by τ1 is a subset of the value set represented by τ2. In particu-
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lar, if there is a data flow from an expression e1 to expression e2 in the program,
this flow information can be captured with a subtyping constraint TypeOf (e1) <:
TypeOf (e2) since the set of e1’s values is a subset of the set of e2’s values. For
example, for a definition y = (λx.x) in a program, a type inference algorithm
would generate a subtyping constraint TypeOf(λx.x) <: TypeOf (y), which cap-
tures the data flow from function (λx.x) to variable y. There is a flow-type dual-
ity [Palsberg and O’Keefe 1995], which means constraint-based type inference can
statically capture complete and detailed data and control flow information of a
program. Such detailed type and flow information is invaluable for analysis and
optimization of programs.

It is well-known that polymorphism is an important feature of programming lan-
guages, encouraging program reuse and thus programmer productivity by enabling
the construction of polymorphic program components that can be reused in differ-
ent contexts. However, it is difficult for a constraint-based type inference algorithm
to be both efficient and highly accurate in the presence of polymorphism.

For example, consider the program (λf. f 0; not(f true)) (λx.x). The identity
function (λx.x) is polymorphic: it is used as a function of type int → int at one
call site, and bool → bool at another. A monomorphic type inference algorithm
would fail to typecheck this program because it only assigns a single type to the
identity function. In general, to obtain a precise analysis result, the type system
often needs to analyze a polymorphic function differently with respect to different
calling contexts. This is usually realized via a re-analysis of the function definition
for a different context. Following Shivers’ terminology [Shivers 1991], we call each
analysis of a function definition a contour. A naive algorithm would re-analyze
a polymorphic function (generate a different contour) for every calling context of
the function. This is too expensive to be feasible since each different call-path
of the function defines a calling context of the function and the number of such
call-paths could be exponential. The challenge of type inference in the presence
of polymorphism is to be as precise as possible while minimizing the number of
contours generated for polymorphic functions.

Shivers’ nCFA family of algorithms [Shivers 1988; Shivers 1991] is an approach
for analyzing programs with polymorphism. The basic idea is to associate every
function application with a call-string of length at most n. The call-string is an
analysis-time analogy of the call-path from the entry point of the whole program
to this function application, and a call-string of length at most n contains the last
n or fewer function call sites on the call-path leading to this application. Two
different applications of the same function share the same contour (i.e., analysis
of the function) if the two applications have the same call-string. The purpose of
using call-strings is for achieving analysis precision by incorporating some context-
sensitivity into the analysis, and the parameter n in the nCFA family of algorithms
controls the degree of context-sensitivity incorporated.

The length of call-strings needed to precisely analyze calls of a polymorphic func-
tion in the program could unfortunately be large. Additionally, there is no efficient
way to determine the length of the call-strings needed to precisely analyze a particu-
lar program, and so some fixed value of n is chosen which greatly over-analyzes some
paths but misses the ones longer than n. So, if n is too small the analysis results are
imprecise, but if it is increased to the level needed for significantly better results the
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algorithm will not terminate in feasible time. Experiments show that, for some pro-
grams, even 1CFA is too expensive to be feasible [Wright and Jagannathan 1998].

Agesen’s Cartesian Product Algorithm (CPA) [Agesen 1995; Agesen 1996] is a
more feasible approach for analyzing programs with parametric polymorphism. The
basic idea is to divide the calling contexts of a function based on the types of the
arguments which the function is applied to. For every possible combination of the
argument types which the function is applied to, there is one contour generated for
the function. If the two applications of a function have the same argument types,
they can share a same contour of the function.

Consider the program (λf. f 0; f 1; not(f true)) (λx.x). There are three appli-
cations of the function (λx.x) in the program. CPA would generate two contours
for the function corresponding to the two possible argument types of the function.
In other words, the function (λx.x) is analyzed twice: one contour is generated for
applications with arguments of type int and another contour is generated for ap-
plications with arguments of type bool. Since the function is analyzed differently
with respect to the application f true and the other two applications, CPA can
analyze this program precisely. Furthermore, since the two applications f 0 and f 1
have the same argument type, they would share a same contour of function (λx.x).
The 1CFA algorithm can also analyze this program precisely but must generate
three contours for (λx.x), so CPA can analyze the program more efficiently than
1CFA.

The above discussion shows how different type inference algorithms use different
strategies for handling polymorphism. The first result presented in this paper is
a generic theoretical framework for polymorphic constraint-based type inference
[Smith and Wang 2000]. A concrete type inference algorithm can be obtained by
instantiating the framework with a particular strategy for handling polymorphism.
We define nCFA and CPA algorithms as instantiations of the framework. Our pur-
pose in designing a new framework is not primarily to give “yet another framework”
for polymorphic analyses, but to develop a framework particularly useful for the
development of new polymorphic analyses, for proving the correctness of analyses,
and for improving on implementations of existing analyses. We in fact used the
framework as an aid in the design of our novel Data Polymorphic CPA (DCPA)
algorithm.

The soundness of the framework is established via subject reduction, and thus
every algorithm that can be defined as an instantiation of the framework, including
nCFA and CPA, is sound. We also present an extension of the framework for
analyzing object-oriented languages.

In this paper we also present research results on precise constraint-based type
inference in the presence of data polymorphism. Data polymorphism refers to
the ability of an imperative variable to hold values of different types at run-
time [Plevyak and Chien 1994; Agesen 1996]. For example, a variable of type
java.lang.Object in Java can hold object values of arbitrary types. Data poly-
morphism arises in programming languages with polymorphic imperative variables,
and it is particularly common and important in object-oriented programming. Age-
sen’s CPA can analyze programs with parametric polymorphism effectively, but it
loses precision significantly for data-polymorphic programs. Agesen [1996] consid-
ers the development of an extension of CPA to handle data polymorphism as an
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open problem.
We develop a novel algorithm, Data-Polymorphic CPA (DCPA), which extends

CPA with the ability to analyze data-polymorphic programs effectively. The ba-
sic idea is to detect those function applications and object creations where CPA
might lose precision because of data polymorphism. For those function applica-
tions and object creations detected, more contours and object types are generated
to improve the precision. Compared to Plevyak and Chien’s Iterative Flow Anal-
ysis (IFA) [Plevyak and Chien 1994], which analyzes data-polymorphic programs
with an iterative multiple-pass approach, the detection of data polymorphism in
DCPA is performed online, and DCPA is thus a less complex one-pass algorithm
with feasible run-time performance.

This paper lastly presents results on implementing polymorphic constraint-based
type inference systems for realistic programming languages. This is a challenging
task. First, the basic inference algorithm needs to be extended so that the rich
language features can be analyzed effectively. For example, a type inference system
for Java should handle features including classes, objects, interfaces, inner classes,
exceptions and libraries. And various implementation issues need to be addressed
so that a practical system can be obtained from a theoretical algorithm. Such issues
include termination, recursion handling, constraint-representation, and scalability.

We have constructed a prototype implementation of a constraint-based type infer-
ence system for the full Java language [Wang and Smith 2001]. The system includes
implementations of 0CFA, CPA and our novel DCPA algorithm. The system in-
corporates a series of implementation optimizations that significantly improve the
performance of the system. In particular, a novel version of online cycle elimina-
tion [Fähndrich et al. 1998] is incorporated and a limited form of unification is also
used. The system is used as a tool to statically check whether Java typecasts in
a program will always succeed at run-time. Cast-checking is a good test of the
accuracy of type inference, since each cast by definition is beyond the Java static
type system and so represents a more challenging type inference problem.

We have tested the system with a suite of realistic Java applications. Benchmark
results are presented to compare the 0CFA, CPA and DCPA algorithms in terms
of both efficiency and analysis precision. DCPA shows good results on benchmark
tests: nearly all casts that could be verified statically by a flow-insensitive analysis
have been verified by our DCPA implementation; DCPA is substantially more pre-
cise than CPA and 0CFA on benchmark programs; and, the efficiency of DCPA is
comparable to CPA.

The remainder of the paper is organized as follows. We first give a presentation
of our framework for polymorphic constraint-based type inference in Section 2. We
define the framework, its instantiation to nCFA and CPA, and prove the soundness
of the framework via subject-reduction. In Section 5, we extend the framework to
the analysis of object-oriented languages, a more appropriate foundation for our
Java implementation. We then study the phenomenon of data polymorphism and
present our DCPA algorithm in Section 6. We discuss existing solutions for data
polymorphism, explain the key ideas of DCPA, and present a formal definition of
DCPA via a stack-based state machine. In Section 7, we present our implementation
of the constraint-based type inference system for Java, including an implementation
of DCPA. Section 8 presents the experimental results of our system on benchmark
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programs, and compares 0CFA, CPA and DCPA in terms of efficiency and precision.
We review related work in Section 9. Finally, in Section 10, we summarize the
contributions of the paper.

2. A FRAMEWORK FOR POLYMORPHIC TYPE INFERENCE

In this section, we define a framework for polymorphic constraint-based type in-
ference. The framework is a generic one: it takes a concrete strategy for handling
polymorphism as a parameter; different algorithms can be defined by instantiating
the framework with different polymorphism-handling strategies.

We first describe a language, on which the type inference is defined, and we
present a small-step operational semantics for the language. We then give a formal
definition of the framework by defining the type language and specifying the two
phases of type inference: constraint generation and closure computation. We then
show how to obtain concrete algorithms from the framework by formulating Shivers’
nCFA and Agesen’s CPA algorithms as instantiations of the framework. Finally,
we prove the soundness of the framework via subject-reduction.

2.1 Source Language

The language we study here is a call-by-value lambda calculus. It is similar to
the language used in [Palsberg and Pavlopoulou 1998], In Section 5, we will extend
the type inference framework defined in this section to analyze object-oriented
languages.

Definition 2.1 (The Language).

e ::= x | v | succ e | if0 e e e | e e | el

v ::= n | (λx.e)l

where e ∈ Expression, v ∈ Value, x ∈ Variable, n ∈ Integer, and l ∈ Label.

An expression e is a program if and only if e is a closed expression. We assume
that every subterm of a program is associated with a unique label. Such labels
are used for flow analyses: if a flow analysis intends to know what data values
would flow to the expression e, a unique label l is attached to e. All functions are
labeled, as (λx.e)l. Recursive definitions may be constructed in this language via
the Y -combinator.

2.2 Semantics

We now define the semantics of the language.

Definition 2.2 (Reduction Relation −→). We define a reduction relation among
expressions as follows:

succn −→ n′ where n′ = n + 1
if0 0 e1 e2 −→ e1

if0n e1 e2 −→ e2 where n 6= 0
(λx.e)l v −→ e[v/x]
vl −→ v

The reduction relation defines the basic evaluation steps of the language. The
notation e[v/x] means the substitution of v for free occurrences of x in e.
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Definition 2.3 (Standard Reduction Relation 7−→). We define a standard

reduction relation among closed expressions as follows:

E[e] 7−→ E[e′] iff e −→ e′

where

E ::= [ ] | E e | v E | succE | if0E e1 e2.

In the above definition, an evaluation context E is an expression with one sub-
expression replaced by a hole, written as [ ]. We use the notion E[e] to denote
the expression produced by filling the single hole in E with expression e. The
standard reduction relation defines the evaluation steps of the language by imposing
a deterministic order on evaluating sub-expressions: when evaluating expression
E[e], sub-expression e is the next sub-expression to be evaluated.

We define relation
∗

7−→ as the reflexive and transitive closure of standard reduction
relation 7−→. The semantics of the language is defined with a partial function eval
on programs:

eval(e) = v iff e
∗

7−→ v.

2.3 The Type System

The type system is based on the Aiken and Wimmers [1993] style constraint system;
in particular it is most closely derived from the system in [Eifrig et al. 1995b].

Definition 2.4 (Types). The type grammar is as follows:

τ ∈ Type ::= t | τv | t1 → t2 | int | l
t ∈ TypeVar

l ∈ Label

t ∈ TypeVarSet = Pfin(TypeVar)
τv ∈ ValueType ::= int | (∀ t . t → τ \ C)l

τ1 <: τ2 ∈ Constraint

C ∈ ConstraintSet = Pω(Constraint)

In the above definition, τ1 <: τ2 is a subtyping constraint, with τ1 as the lower-
bound, and τ2 as the upper-bound, meaning that τ1 is a subtype of τ2. The types
for the most part are standard, but with a few exceptions we focus on here. Rather
than using τ everywhere in types, in some positions we restrict a type to be a type
variable t only. These restrictions are designed to make the presentation simpler.
Function uses (call sites) are given type t1 → t2. ValueType are the types for
data values. For the purpose of flow analysis, labels l are also used as types l. To
ease the construction of the soundness proof, we use two different types for integer-
valued expressions: type int is only used as a lower bound, and int is only used
as an upper bound. Functions are given polymorphic type schemes of the form
(∀ t . t → τ \ C)l, where t is the type variable for the formal argument, τ is the
return type, C is the set of constraints bound in this type scheme, t is the set of
bound type variables, and l is the label for the function definition.
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(Var)
A(x) = t

A ` x : t \ {}

(Int)
A ` n : int \ {}

(Succ)
A ` e : τ \ C

A ` succ e : int \ {τ <: int } ∪ C

(If0)
A ` e1 : τ1 \ C1, e2 : τ2 \ C2, A ` e3 : τ3 \ C3

A ` if0 e1 e2 e3 : t \ {τ1 <: int , τ2 <: t, τ3 <: t} ∪ C1 ∪C2 ∪ C3

(Abs)
A, {x : t} ` e : τ \ C

A ` (λx.e)l : (∀ t . t→ τ \ C)l \ {}
where t = FTV (t→ τ \ C)− FTV (A)

(Appl)
A ` e1 : τ1 \ C1, e2 : τ2 \ C2

A ` e1 e2 : t2 \ {τ1 <: t1 → t2, τ2 <: t1} ∪ C1 ∪ C2

(Label)
A ` e : τ \ C

A ` el : τ \ {τ <: l} ∪C

Fig. 1. Type Inference Rules

2.4 Constraint Generation

The first phase of a constraint-based type inference algorithm is to generate an
initial set of constraints corresponding to the program under analysis. Constraint
generation is defined by the type inference rules in Figure 1.

A type environment A is a mapping from program variables to type variables.
Given a type environment A, the proof system assigns a type to expression e via
the type judgment A ` e : τ \ C, where τ is the type for e, and C is the
set of subtyping constraints that models the flow paths in e. We abbreviate A `
e : τ \ C as ` e : τ \ C when A is empty. The rules are deterministic
except that nondeterminism may arise in the choice of type variables. We restrict
type derivations to be of a form where fresh type variables are used whenever it is
possible. With this restriction, the first phase of type inference is trivially decidable
and is unique modulo choice of type variable names.

Definition 2.5 (Type inference algorithm). Given program e, its inferred
type is τ \ C provided ` e : τ \ C.

The intuition behind the inference rules is that a subtyping constraint τ1 <: τ2

indicates a potential flow from expressions of type τ1 to expressions of type τ2. The
rules generally follow standard presentations of Aiken-Wimmers constrained type
system, except for the (Abs) type. The (Var) rule extracts the type for a variable
from the type environment. The (Int) rule assigns type int to integer constants.
The (Succ) rule generates constraint τ <: int to ensure the applicability of the succ
operation. The rule (If0) generates constraint τ1 <: int to ensure the applicability
of the condition test, and it generates constraints τ2 <: t and τ3 <: t for flow paths
from e2 and e3 to the if0 expression. The (Label) rule generates constraint τ <: l
to associate the possible values of expression el with label l.

The (Abs) rule assigns each function a polymorphic type scheme. In this rule,
FTV (·) is a function that extracts free type variables; t collects all the type variables
generated when the inference is applied to the function body; and C collects all
the constraints corresponding to the function body. The manner in which type
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(Trans)
τv <: t, t <: τ

τv <: τ

(∀-Elim)
(∀ t . t→ τ \ C)l <: t1 → t2, τv <: t1

τv <: Θ(t), Θ(τ) <: t2, Θ(C)
where Θ = Poly((∀ t . t→ τ \ C)l <: t1 → t2, τv <: t1)

Fig. 2. Constraint Closure Rules

schemes are formed is similar to standard polymorphic constrained type systems,
but the significant difference here is that every function is given a type scheme. By
contrast, in a system based on let-polymorphism, the let construct dictates where
type schemes are introduced.

The (Appl) rule generates t1 → t2 as type for the application site, with t1 as
argument type, and t2 as the type for the application result. The constraint τ2 <: t1
lets values of e2 flow in as the actual argument values, and the constraint τ1 <:
t1 → t2 lets the values of e1 flow to this application site as function values.

We take an intensional view of types: two types are equivalent if and only if they
are syntactically identical. In particular, type schemes corresponding to different
functions in the program are always different. For example, (∀ {t1}.t1 → t1 \{})l1

and (∀ {t2}.t2 → t2 \{})l2 are regarded as different if l1 6= l2 even though they
are equivalent by alpha-conversion. This is because we wish to distinguish different
functions in the analysis to obtain precise flow analyses.

We apply the rules on an example studied in [Palsberg and Pavlopoulou 1998]:

E1 ≡ (λf.succ ((f f) 0))l1 (if0 k (λx.x)l2 (λy.(λz.z)l3)l4)

To ease presentation, each program variable is inferred with a type variable having
exactly the same name. The following constraints are generated:
` (λf.succ ((f f) 0))l1 : τf\{}, where τf ≡ (∀ {f, t1, t2, t3, t4}.f → int \ {f <:
t1 → t2, f <: t1, t2 <: t3 → t4, int <: t3, t4 <: int })l1 ,
` (λx.x)l2 : τx\{}, where τx ≡ (∀ {x}.x → x\{})l2 ,
` (λy.(λz.z)l3)l4 : τy\{}, where τy ≡ (∀ {y}.y → (∀ {z}.z → z\{})l3\{})l4.
` E1 : t7 \ {int <: int , τx <: t5, τy <: t5, τf <: t6 → t7, t5 <: t6}

Thus, the initial constraint set generated for this program is: {int <: int , τx <:
t5, τy <: t5, τf <: t6 → t7, t5 <: t6}.

2.5 Computation of the Closure

The inference algorithm applied to program e results in a type judgment ` e :
τ \ C with C as the set of initial constraints generated for e. For a flow analysis,
we need to generate all the possible data-flow and control-flow paths and propagate
value types along all the data-flow paths. This is achieved by applying the closure
rules of Figure 2 to C, propagating information via deduction rules on the subtyping
constraints. The (Trans) closure rule is the transitivity rule that models run-time
data flow by propagating value types forward along flow paths.

The most important closure rule is (∀-Elim), which performs ∀ elimination. The
constraint (∀ t . t → τ \ C)l <: t1 → t2 indicates a function flowing to a call
site, where (∀ t . t → τ \ C)l is the type for the function and t1 → t2 is the
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type representing the call site. The constraint τv <: t1 means that a value of type
τv flows in as the actual argument. At run-time, upon each function application,
all local variables of the function are allocated fresh locations on the stack. In
the analysis a corresponding renaming Θ ∈ TypeVar

p
→ TypeVar is applied to

type variables in t (TypeVar
p
→ TypeVar denotes the partial-function space on

TypeVar). Unlike the run-time behavior, Θ may not always produce fresh type
variables, but may for efficiency elect to reuse existing ones. The partial function
Θ is extended to types, constraints, and constraint sets in the usual manner. Θ(t)
for t 6∈ t is defined to be t. We call Θ(τ) an instantiation of τ . Following the
terminology of Shivers’ nCFA [Shivers 1991], we call a renaming Θ a contour. The
∀ is eliminated from (∀ t . t → τ \ C)l by applying Θ to C. The (∀-Elim) rule then
generates additional constraints to capture the flow from the actual argument τv
to the formal argument Θ(t), and from the return value Θ(τ) to the application
result t2.

The (∀-Elim) closure rule is parameterized by function Poly ∈ (Constraint ×

Constraint) → (TypeVar
p
→ TypeVar), which decides for this particular func-

tion, call site, and actual argument type, which contour is to be used (i.e., created
or reused, based on whether the renaming is to fresh or already existing variables).
Providing a concrete Poly instantiates the framework to give a concrete algorithm.
For example, the monomorphic analysis 0CFA is defined by letting Poly always
return the identity renaming. This particular example shows how Poly may reuse
existing contours. The differing analyses are defined by differing Poly which use
different strategies for sharing contours. In the next section we will show nCFA and
CPA algorithms can be defined by instantiating the framework with particular def-
initions of the Poly function. The parameterization based on both the call site and
argument is an important feature of our framework; as we will show below, nCFA
instantiates contours based on the call site only, and CPA instantiates contours on
the argument type only.

Definition 2.6 (Closure). For a constraint set C and renaming function Poly,
we define ClosurePoly(C) as the least superset of C closed under the closure rules
of Figure 2.

This closure is well-defined since the rules can be seen to induce a monotone function
on constraint sets. More precisely, consider the function F which takes a constraint
set C and returns C plus all constraints which directly follow from C by any one
of the closure rules. F is monotone: if C ⊆ C′, for some C′, then the closure rules
applied to C′ will add strictly more constraints than the closure rules applied to C,
and thus F is monotone. By Tarski’s Fixed Point Theorem, F then has a least fixed
point. By this definition, some Poly may produce infinite closures since infinitely
many contours may be created. Such analyses are still worthy of study even though
they are not implementable.

Definition 2.7 (Analysis). Define AnalysisPoly(e) = ClosurePoly(C), where the
inference algorithm infers ` e : τ \ C.

The output of an analysis is a set of constraints, which is the closure computed
from the initial constraint set generated by the inference rules. The closure contains
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complete flow information about the program; various program properties can be
deduced from it.

Definition 2.8 (Type-Safe Constraint Set). A constraint set C is type-safe
iff C does not contain any type-contradictory constraints of the following form:

(1) int <: t1 → t2;

(2) (∀ t . t → τ \ C)l <: int

Definition 2.9 (Type-Checking). A program e is well-typed iff AnalysisPoly(e)
is type-safe.

For example, analyzing program succ (λx.x) would generate a type-contradictory
constraint (∀ {x}.x → x\{})l <: int , which indicates a type error. A computation
state is wrong if computation cannot continue due to a run-time type error.

We now show how the results of a conventional control flow analysis can be
obtained in our framework. For an expression of interest, a flow analysis aims to
statically predict what data values would flow to the expression. Recall that a
unique label is attached to each of those expressions of interest. Type inference
outputs a constraint closure as result. A flow analysis can be obtained from the
closure as follows:

For a program e, if ` e : τ \ C and C′ is a closure of C, then: if int <: l ∈ C′,
integer values are considered flowing to expression el; if (∀ t . t → τ1 \ C1)

l1 <: l ∈
C′, function (λx.e1)

l1 is considered flowing to expression el.
The framework enjoys both type soundness and flow soundness. The type sound-

ness ensures that, if a program is typechecked successfully, it cannot go wrong during
execution; and the flow soundness ensures that any flow analysis produced from the
framework correctly approximates the run-time data flow.

The soundness proof is presented in Section 4. Since the proof constructed is
independent of the particular strategies for handling polymorphism (specified by
the function Poly), the soundness of the framework implies that any analysis defined
as an instantiation of the framework is also sound.

3. INSTANTIATING THE FRAMEWORK

In this section we present various algorithms as instantiations of our framework.

3.1 nCFA Instantiation

In Shivers’ nCFA analysis [Shivers 1991], each function application (call) is asso-
ciated with a call-string of length at most n. The call-string contains the last n
or fewer call sites on the call-path leading to this application. Applications of the
same function share the same contour (i.e., analysis of the function) if they have
the same call-string. To present nCFA in our framework, type variables are defined
with superscripts that denote the call-string:

α ∈ Identifier

s ∈ Superscript = Identifier List

t ∈ TypeVar ::= αs

We use the following list notation: the empty list is [ ], [α1, . . . , αm] is a list of
m elements, l1 @ l2 appends lists, and l(1..n) is the list consisting of the first
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min(n, length(l)) elements of list l. Each type variable αs is tagged with a call-
string s. All type variables generated by the inference rules have empty lists as

superscripts. By the inference rule (Appl), a call site is inferred with a type α
[ ]
1 →

α
[ ]
2 , we use α2 to identify this call site, thus a call-string is a list of such identifiers.

All bound type variables of a ∀ type have empty list superscripts. When the ∀
quantifier is eliminated by the (∀-Elim) closure rule, those bound type variables
are renamed by changing the superscripts from empty lists to the appropriate call-
strings.

Definition 3.1 (nCFA Algorithm). The nCFA algorithm is an instantiation
of the framework with Poly = CFA, where

CFA((∀ t . t → τ \ C) <: t1 → αs2

2 , τv <: t1) = Θ, where for each α[ ] ∈ t ,

Θ(α[ ]) = αs′

, where s′ = ([α2] @ s2)(1..n)

It can be shown by induction that s′ is the call-string for application (∀ t . t →
τ \ C) <: t1 → αs2

2 . The definition of Θ ensures that applications of the same
function share the same contour if and only if they have the same call-string.

Consider the program E1 which we have studied in Section 2.4:

E1 ≡ (λf.succ ((f f) 0))l1 (if0 k (λx.x)l2 (λy.(λz.z)l3)l4)

Applying nCFA to program E1, since function (λf . . .)l1 has only one application,
the (∀-Elim) rule generates only one contour Θ for this function, resulting in τx <:
Θ(f) and τy <: Θ(f). This means that both (λx.x)l2 and (λy.(λz.z)l3)l4 flow
to f , and at the application site f f there are four applications. One of them,
(λx.x)l2 applying to (λy.(λz.z)l3)l4 generates constraints: (∀ {y}.y → (∀ {z}.z →
z\{})l3\{})l4 <: Θ(t2), Θ(t2) <: Θ(t3) → Θ(t4), int <: Θ(t3), Θ(t4) <: int , where
t2 and t4 are types for expressions f f and ((f f) 0) respectively. This leads to a
type error: (∀ {z}.z → z\{})l3 <: int . Hence nCFA fails to type-check E1 for
arbitrary n. This example shows that nCFA is imprecise even for large n.

3.2 CPA Instantiation

The Cartesian Product Algorithm (CPA) [Agesen 1995; Agesen 1996] is a concrete
type inference algorithm for object-oriented languages. For a message sending ex-
pression, CPA computes the cartesian product of the types for the actual arguments.
For each element of the cartesian product, the method body is analyzed exactly
once with one contour generated. The calling-contexts of a method are partitioned
by the cartesian product, rather than by call-strings as in nCFA. In our language,
each function has only one argument. For each function, CPA generates exactly
one contour for each distinct argument type that the function is applied to. To
present CPA, type variables are defined with structure:

α ∈ Identifier

t ∈ TypeVar ::= α | ατv

The inference rules are constrained to generate type variables without superscripts.
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Definition 3.2 (CPA algorithm). The CPA algorithm is the instantiation of
the framework with Poly = CPA, where

CPA((∀ t . t → τ \ C) <: t1 → t2, τv <: t1) = Θ, where for each α ∈ t , Θ(α) = ατv

The contours Θ are generated based on the actual argument type τv , independent of
the call site t1 → t2. This is the opposite of CFA, which ignores the value type τv ,
and only uses the call site t1 → t2. Given a particular function and its associated ∀
type in a program, this algorithm will generate a unique contour (∀ elimination) for
each distinct value type the function is applied to. It however may share contours
across call sites. Agesen [1996] presents convincing experimental evidence that the
CPA approach is both more efficient and more precise than nCFA.

Again, consider the program E1 which we have studied in Section 2.4:

E1 ≡ (λf.succ ((f f) 0))l1 (if0 k (λx.x)l2 (λy.(λz.z)l3)l4)

We sketch how CPA would analyze this program. Even though there is only one
application site for the function (λf . . .)l1 , the function is applied to two different
actual argument values. So, the (∀-Elim) rule generates two contours Θ1 and Θ2

for (λf . . .)l1 with Θ1(f) = f τx , τx <: f τx , Θ2(f) = f τy , and τy <: f τy . The two
contours for function (λf . . .)l1 split the single static call site f f into two call sites:
at one call site (λx.x)l2 is applied to itself; at another call site (λy.(λz.z)l3)l4 is
applied to itself. Thus the program is type-checked successfully.

4. SOUNDNESS PROOF

In this section, we establish soundness of the type inference framework. The proof
is based on the subject-reduction proof technology [Wright and Felleisen 1994].
Compared to other existing soundness proofs for constraint-based type systems
[Eifrig et al. 1995b; Eifrig et al. 1995a; Flanagan 1997], our proof has some novel
aspects: no model theory or extra type system is employed in the proof. Instead,
for two expressions related by the reduction relation, a generalized subtype relation
is defined to directly relate the types of the two expressions. A subject reduction
property is then established with respect to the generalized subtyping relation.

4.1 Generalized Subtyping Relation

The basic idea of subject reduction is to prove that evaluation does not change the
type of the expression. In the presence of subtyping, this is refined to be that if
e1

∗

7−→ e2, the type of e2 is a subtype of the type of e1.

Definition 4.1 (Generalized Subtyping Relation). Given a closed constraint
set C, we define a relation among types as the least relation satisfying all the fol-
lowing conditions:

(1) C |= τ � τ

(2) C |= τ1 � τ2 if τ1 <: τ2 ∈ C

(3) if C |= τ1 � τ2, and C |= τ2 � τ3, then C |= τ1 � τ3

(4) C |= (∀ t . t → τ1 \ C1)
l � (∀ t . t → τ2 \ C2)

l if C |= τ1 � τ2 and for each
τ <: τ ′ ∈ C1, there exists τ ′′ s.t. C |= τ � τ ′′ and τ ′′ <: τ ′ ∈ C2.
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This definition is more precisely the least fixed point of a monotone function on
relations; the function is monotone because all occurrences of C |= τ � τ ′ are
strictly positive. Generalized subtyping places ∀ types in a subtyping relationship
based on their internal structure. Some interesting properties about generalized
subtyping can be established easily:

Lemma 4.2. If C |= τv � τv ′, then it must be one of the following two cases:

(1 ) C |= int � int;

(2 ) C |= (∀ t . t → τ1 \ C1)
l � (∀ t . t → τ2 \ C2)

l, where C |= τ1 � τ2 and for each

τ <: τ ′ ∈ C1, there exists τ ′′ s.t. C |= τ � τ ′′ and τ ′′ <: τ ′ ∈ C2.

Lemma 4.3. If C |= t � τ , and t 6= τ , then t <: τ ∈ C.

The following lemma relates generalized subtyping to the underlying constraint
set C:

Lemma 4.4. If C |= τv � τ and τ is not a value type, then there exists τv ′ s.t.

C |= τv � τv ′ and τv ′ <: τ ∈ C.

Proof: We use an induction on the structure of the derivation concluding
C |= τv � τ :

—Case 1: τv <: τ ∈ C. The lemma trivially holds in this case.

—Case 2: there exists τ ′ s.t. C |= τv � τ ′, C |= τ ′ � τ , and τ ′ 6= τ . If τ ′ is a value
type, by induction, there is a value type τv ′ s.t. C |= τ ′ � τv ′ and τv ′ <: τ ∈ C.
Thus, C |= τv � τv ′ and τv ′ <: τ ∈ C. If τ ′ is not a value type, τ ′ must be a
type variable. By induction, there exists τv ′ s.t. C |= τv � τv ′ and τv ′ <: τ ′ ∈ C.
Since τ ′ is a type variable, C |= τ ′ � τ , τ ′ 6= τ , by Lemma 4.3, τ ′ <: τ ∈ C. By
transitivity, τv ′ <: τ ∈ C. And we have C |= τv � τv ′.

2

Definition 4.5 (|=). For a closed constraint set C1 and constraint set C2, we
define C1 |= C2, iff, for any τ � τ ′ ∈ C2, C1 |= τ � τ ′.

We now prove several lemmas which are important to the subject-reduction proof.

Lemma 4.6. If C |= τ � τ ′, and Θ is a renaming s.t. Θ(t) = t for any t ∈
FTV (C), then, C |= Θ(τ) � Θ(τ ′).

Proof: We use induction on the structure of the derivation concluding that
C |= τ � τ ′, and we do a case analysis on the last step of the derivation:

—Case 1: τ = τ ′. We have Θ(τ) = Θ(τ ′).

—Case 2: τ <: τ ′ ∈ C. For any type variable t which occurs freely in τ or τ ′,
Θ(t) = t. Thus, Θ(τ) = τ , Θ(τ ′) = τ ′, and C |= τ � τ ′.

—Case 3: C |= τ � τ ′′, C |= τ ′′ � τ ′. By induction, C |= Θ(τ) � Θ(τ ′′) and
C |= Θ(τ ′′) � Θ(τ ′). By transitivity, C |= Θ(τ) � Θ(τ ′).

—Case 4: τ = (∀ t . t → τ1 \ C1)
l and τ ′ = (∀ t . t → τ2 \ C2)

l. Since C |= τ1 � τ2,
by induction, C |= Θ(τ1) � Θ(τ2). Consider a constraint Θ(τ3) <: Θ(τ ′

3) ∈ Θ(C1)
with τ3 <: τ ′

3 ∈ C1. Since τ3 <: τ ′

3 ∈ C1, C |= τ3 � τ ′′

3 and τ ′′

3 <: τ ′

3 ∈ C2, thus
Θ(τ ′′

3 ) <: Θ(τ ′

3) ∈ Θ(C2), and by induction, C |= Θ(τ3) � Θ(τ ′′

3 ). Therefore, we
have C |= (∀ t . t → Θ(τ1) \ Θ(C1))

l � (∀ t . t → Θ(τ2) \ Θ(C2))
l.
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2

Lemma 4.7. If A ` e : τ \ C, and C′ |= C, then there exists a closure C′′ of

C s.t. C′ |= C′′.

Proof: We prove the lemma by inductively constructing a closure C′′ of C with
only constraints of form τ <: τ ′ where C′ |= τ � τ ′. The closure C′′ is constructed
as follows:

—First, we have C ⊆ C′′.

—If τv <: t ∈ C′′ and t <: τ ∈ C′′, by induction, C′ |= τv � t and C′ |= t � τ .
Thus by transitivity, C′ |= τv � τ , and we add τv <: τ into C′′.

—If (∀ t . t → τ1 \ C1)
l <: t1 → t2 ∈ C′′ and τv <: t1 ∈ C′′, by induction, we

have C′ |= (∀ t . t → τ1 \ C1)
l � t1 → t2 and C′ |= τv � t1. By Lemma 4.2

and Lemma 4.4, we have C′ |= (∀ t . t → τ1 \ C1)
l � (∀ t . t → τ2 \ C2)

l,
(∀ t . t → τ2 \ C2)

l <: t1 → t2 ∈ C′, C′ |= τv � τv ′ and τv ′ <: t1 ∈ C′.
Since {(∀ t . t → τ2 \ C2)

l <: t1 → t2, τv
′ <: t1} ⊆ C′, there is a renaming Θ

on t s.t. {τv ′ <: Θ(t), Θ(τ2) <: t2} ∪ Θ(C2) ⊆ C′. We add constraints in set
{τv <: Θ(t), Θ(τ1) <: t2} ∪ Θ(C1) to C′

2, and we prove that for any constraint
τ3 <: τ ′

3 in this set, C′ |= τ3 � τ ′

3. By transitivity, C′ |= τv � Θ(t). Since
C′ |= (∀ t . t → τ1 \ C1)

l � (∀ t . t → τ2 \ C2)
l, C′ |= τ1 � τ2. By Lemma 4.6,

C′ |= Θ(τ1) � Θ(τ2). Thus, by transitivity, C′ |= Θ(τ1) � t2. Consider constraint
Θ(τ3) <: Θ(τ ′

3) ∈ Θ(C1) with τ3 <: τ ′

3 ∈ C1. Since C′ |= (∀ t . t → τ1 \ C1)
l �

(∀ t . t → τ2 \ C2)
l, there exists τ ′′

3 s.t. C′ |= τ3 � τ ′′

3 and τ ′′

3 <: τ ′

3 ∈ C2.
Since C′ |= τ3 � τ ′′

3 , by Lemma 4.6, C′ |= Θ(τ3) � Θ(τ ′′

3 ). Since τ ′′

3 <: τ ′

3 ∈ C2,
Θ(τ ′′

3 ) <: Θ(τ ′

3) ∈ Θ(C2). Since Θ(C2) ⊆ C′, we have C′ |= Θ(τ ′′

3 ) � Θ(τ ′

3).
Thus, by transitivity, C′ |= Θ(τ3) � Θ(τ ′

3).

2

Lemma 4.8. If C |= C′, then, for any C′ |= τ � τ ′, C |= τ � τ ′.

Proof: We use an induction on the structure of the derivation concluding that
C′ |= τ � τ ′:

—Case 1: τ = τ ′. Thus C |= τ � τ ′.

—Case 2: τ <: τ ′ ∈ C. Since C |= C′, C |= τ � τ ′.

—Case 3: C′ |= τ � τ ′′, C′ |= τ ′′ � τ ′. By induction, C |= τ � τ ′′ and C |= τ ′′ � τ ′.
By transitivity, C |= τ � τ ′.

—Case 4: τ = (∀ t . t → τ1 \ C1)
l and τ ′ = (∀ t . t → τ2 \ C2)

l. Since C′ |= τ1 � τ2,
by induction, C |= τ1 � τ2. Consider a constraint τ3 <: τ ′

3 ∈ C1, there exists
τ ′′

3 s.t. C′ |= τ3 � τ ′′

3 and τ ′′

3 <: τ ′

3 ∈ C2, and, by induction, C |= τ3 � τ ′′

3 .
Therefore, we have C |= (∀ t . t → τ1 \ C1)

l � (∀ t . t → τ2 \ C2)
l.

2

Corollary 4.9. If C1 |= C2 and C2 |= C3, then C1 |= C3.

4.2 Subject Reduction

Since applying inference rules on the same expression twice leads to two derivations
which only differ in the choice of type variables, we have:
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Lemma 4.10 (Renaming). If A ` e : τ \ C, and there is a mapping

S ∈ TypeVar
p
→ TypeVar s.t. for any t 6= t′, we have S(t) 6= S(t′), then, when

S is extended naturally as a mapping on types, constraints, and constraint systems

and type environments, we have S(A) ` e : S(τ) \ S(C).

Proof: By induction on the size of the derivation concluding with A ` e :
τ \ C. 2

Lemma 4.11 (Substitution). If A, {x : tx} ` e : τ \ C, and A ` v :
τv \ {}, then A ` e[v/x] : τ ′ \ C′ s.t. FTV (τ \ C) − {tx} = FTV (τ ′ \ C′),
{τv <: tx} |= τ ′ � τ and for any constraint τ1 <: τ2 ∈ C′, there exists τ3 s.t.

{τv <: tx} |= τ1 � τ3, and τ3 <: τ2 ∈ C.

Proof: We prove by induction on the size of e. If x 6∈ FreeVar(e), then e[v/x] = e,
and the lemma trivially holds. We now proceed by assuming that x ∈ FreeVar(e).
We use a case analysis on the last type inference rule used in the last step of the
derivation concluding with A, {x : tx} ` e : τ \ C:

—(Var): Since x ∈ FreeVar(e), e = x, and e[v/x] = v. We have A ` e[v/x] :
τv \ {}, By the (Var) rule, we have A, {x : tx} ` e : tx \ {}. We have
{τv <: tx} |= τv � tx, FTV (tx \ {}) = {tx}, and FTV (τv \ {}) = {}. Thus the
lemma holds.

—(Int): This case cannot happen since x ∈ FreeVar(e).

—(Succ): e = succ e1, and e[v/x] = succ e1[v/x]. By the (Succ) rule, we have
A, {x : tx} ` e1 : τ1 \ C1 and A, {x : tx} ` e : int \ C, where C = {τ1 <:
int } ∪ C1. By induction: A ` e1[v/x] : τ ′

1 \ C′

1, s.t. {τv <: tx} |= τ ′

1 � τ1,
and for any constraint τ2 <: τ ′

2 ∈ C′

1, there exists τ ′′

2 s.t. {τv <: tx} |= τ2 � τ ′′

2 ,
and τ ′′

2 <: τ ′

2 ∈ C1. Applying the (Succ) rule on A ` e1[v/x] : τ ′

1 \ C′

1, we
get A ` e[v/x] : int \ C′, where C′ = C′

1 ∪ {τ ′

1 <: int }. First, we have
{τv <: tx} |= int � int. Secondly, consider a constraint τ2 <: τ ′

2 ∈ C′. If the
constraint is τ ′

1 <: int , we have {τv <: tx} |= τ ′

1 � τ1 and τ1 <: int ∈ C.
Otherwise, we have τ2 <: τ ′

2 ∈ C′

1, there exists τ ′′

2 s.t. {τv <: tx} |= τ2 � τ ′′

2 , and
τ ′′

2 <: τ ′

2 ∈ C1 ⊆ C. By induction, FTV (τ1 \ C1)− {tx} = FTV (τ ′

1 \ C′

1). Thus,
FTV (int \ C) − {tx} = FTV (int \ C′).

—(If0): e = if0 e1 e2 e3, and e[v/x] = if0 e1[v/x] e2[v/x] e3[v/x]. By (If0) rule,
A, {x : tx} ` e1 : τ1 \ C1, A, {x : tx} ` e2 : τ2 \ C2, A, {x : tx} `
e3 : τ3 \ C3, and A, {x : tx} ` e : τ \ C, where τ = t, and C = {τ1 <:
int , τ2 <: t, τ3 <: t} ∪ C1 ∪ C2 ∪ C3. By induction, A ` e1[v/x] : τ ′

1 \ C′

1,
A ` e2[v/x] : τ ′

2 \ C′

2, and A ` e3[v/x] : τ ′

3 \ C′

3. Thus, by applying the
(If0) rule with t as the type for e[v/x], we have A ` e[v/x] : τ ′ \ C′, where
τ ′ = t, and C′ = {τ ′

1 <: int , τ ′

2 <: t, τ ′

3 <: t} ∪ C′

1 ∪ C′

2 ∪ C′

3. First, we have
{τv <: tx} |= t � t. Consider a constraint τ4 <: τ ′

4 ∈ C′. If τ4 <: τ ′

4 ∈ C′

1, then,
by induction, there exists τ ′′

4 s.t. {τv <: tx} |= τ4 � τ ′′

4 and τ ′′

4 <: τ ′

4 ∈ C1. Since
C1 ⊆ C, there exists τ ′′

4 s.t. {τv <: tx} |= τ4 � τ ′′

4 and τ ′′

4 <: τ ′

4 ∈ C. Similarly, if
τ4 <: τ ′

4 is in C′

2 or C′

3, there exists τ ′′

4 s.t. {τv <: tx} |= τ4 � τ ′′

4 and τ ′′

4 <: τ ′

4 ∈ C.
If τ4 <: τ ′

4 is τ ′

1 <: int , by induction, we have {τv <: tx} |= τ ′

1 � τ1, and
we have τ1 <: int ∈ C. If τ4 <: τ ′

4 is τ ′

2 <: t or τ ′

3 <: t, by induction, we
have {τv <: tx} |= τ ′

2 � τ2, {τv <: tx} |= τ ′

3 � τ3, and we know τ2 <: t ∈
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C and τ3 <: t ∈ C. By induction, FTV (τ1 \ C1) − {tx} = FTV (τ ′

1 \ C′

1),
FTV (τ2 \ C2) − {tx} = FTV (τ ′

2 \ C′

2), FTV (τ3 \ C3) − {tx} = FTV (τ ′

3 \ C′

3).
Therefore, FTV (τ \ C) − {tx} = FTV (τ ′ \ C′).

—(Abs): We have e = (λx1.e1)
l. Since x ∈ FreeVar(e), we have x 6= x1 and

e[v/x] = (λx1.e1[v/x])l. By the (Abs) rule: A, {x : tx, x1 : t1} ` e1 : τ1 \ C1,
and A, {x : tx} ` e : τ \ C, where τ = (∀ t . t1 → τ1 \ C1)

l, C = {}
and t = FTV (τ1 \ C1) ∪ {t1} − FTV (A) − {tx}. By induction: A, {x1 :
t1} ` e1[v/x] : τ ′

1 \ C′

1 and FTV (τ1 \ C1) − {tx} = FTV (τ ′

1 \ C′

1). Thus,
t = FTV (τ ′

1 \ C′

1) ∪ {t1} − FTV (A). Applying (Abs) rule, we have: A `
e[v/x] : τ ′ \ C′, where τ ′ = (∀ t . t1 → τ ′

1 \ C′

1)
l and C′ = {}. By induction,

for any constraint τ2 <: τ ′

2 ∈ C′

1, there exits τ ′′

2 s.t. {τv <: tx} |= τ2 � τ ′′

2 , and
τ ′′

2 <: τ ′

2 ∈ C1. Also by induction, {τv <: tx} |= τ ′

1 � τ1. Thus, {τv <: tx} |=
(∀ t . t1 → τ ′

1 \ C′

1)
l � (∀ t . t1 → τ1 \ C1)

l. Since FTV (τ \ C) = FTV (τ1 \ C1)∪
{t1} − t , FTV (τ ′ \ C′) = FTV (τ ′

1 \ C′

1) ∪ {t1} − t , and FTV (τ1 \ C1) − {tx} =
FTV (τ ′

1 \ C′

1), we have FTV (τ \ C) − {tx} = FTV (τ ′ \ C′).

—(Appl): e = e1 e2, and e[v/x] = e1[v/x] e2[v/x]. By the (Appl) rule: A, {x :
tx} ` e1 : τ1 \ C1, A, {x : tx} ` e2 : τ2 \ C2, and A, {x : tx} ` e : τ \ C,
where τ = t2, and C = {τ1 <: t1 → t2, τ2 <: t1} ∪ C1 ∪ C2. By induction:
A ` e1[v/x] : τ ′

1 \ C′

1, and A ` e2[v/x] : τ ′

2 \ C′

2. Thus, by applying
the (Appl) rule with t1 → t2 as the arrow type for the application, we have:
A ` e[v/x] : τ ′ \ C′, where τ ′ = t2, and C′ = {τ ′

1 <: t1 → t2, τ
′

2 <: t1}∪C′

1∪C′

2.
First, we have {τv <: tx} |= t2 � t2. Consider a constraint τ3 <: τ ′

3 ∈ C′. If
τ3 <: τ ′

3 ∈ C′

1, then, by induction, there exists τ ′′

3 s.t. {τv <: tx} |= τ3 � τ ′′

3

and τ ′′

3 <: τ ′

3 ∈ C1. Since C1 ⊆ C, there exists τ ′′

3 s.t. {τv <: tx} |= τ3 � τ ′′

3

and τ ′′

3 <: τ ′

3 ∈ C. If τ3 <: τ ′

3 ∈ C′

2, similarly, there exists τ ′′

3 s.t. {τv <:
tx} |= τ3 � τ ′′

3 and τ ′′

3 <: τ ′

3 ∈ C. If τ3 <: τ ′

3 is τ ′

1 <: t1 → t2, by induction,
{τv <: tx} |= τ ′

1 � τ1, and we know τ1 <: t1 → t2 ∈ C. If τ3 <: τ ′

3 is τ ′

2 <: t1,
by induction, {τv <: tx} |= τ ′

2 � τ2, and we know τ2 <: t1 ∈ C. By induction,
FTV (τ1 \ C1)−{tx} = FTV (τ ′

1 \ C′

1) and FTV (τ2 \ C2)−{tx} = FTV (τ ′

2 \ C′

2).
Thus, FTV (τ \ C) − {tx} = FTV (τ ′ \ C′).

—(Label): e = el
1, and e[v/x] = e1[v/x]l. By the (Label) rule: A, {x : tx} ` e1 :

τ1 \ C1, and A, {x : tx} ` e : τ \ C, where τ = τ1, and C = {τ1 <: l} ∪ C1.
By induction: A ` e1[v/x] : τ ′

1 \ C′

1. Applying the (Label) rule, we get
A ` e[v/x] : τ ′ \ C′ where τ ′ = τ ′

1 and C′ = {τ ′

1 <: l} ∪ C′

1. First, by
induction, {τv <: tx} |= τ ′

1 � τ1, thus {τv <: tx} |= τ ′ � τ . Secondly, consider a
constraint τ2 <: τ ′

2 ∈ C′. If τ2 <: τ ′

2 is τ ′

1 <: l, by induction, {τv <: tx} |= τ ′

1 � τ1.
And we know τ1 <: l ∈ C. Otherwise, τ2 <: τ ′

2 ∈ C′

1. By induction, there exists
τ ′′

2 s.t. {τv <: tx} |= τ2 � τ ′′

2 and τ ′′

2 <: τ ′

2 ∈ C1. Since C1 ⊆ C, there exists τ ′′

2 s.t.
{τv <: tx} |= τ2 � τ ′′

2 and τ ′′

2 <: τ ′

2 ∈ C. By induction, FTV (τ1 \ C1) − {tx} =
FTV (τ ′

1 \ C′

1). Thus, FTV (τ \ C) − {tx} = FTV (τ ′ \ C′).

2

We now establish a subject-reduction property on reduction relation −→.

Lemma 4.12 (Subject Reduction on −→). if e −→ e′, A ` e : τ \ C, C′′

is a closure of C, then: A ` e′ : τ ′ \ C′, C′′ |= τ ′ � τ , and C′′ |= C′.

Proof: We proceed with a case analysis on the relation e −→ e′.
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—Case 1: e = succn, e′ = n′. By (Int) and (Succ) inference rules, we have
A ` succn : int \ {int <: int }. By (Int) rule, we have
A ` n′ : int \ {}. Since {int <: int } |= int � int , and {int <: int } |= {},
the lemma holds in this case.

—Case 2: e = if0 0 e1 e2, e′ = e1. By (if0) rule, we have: A ` e′ : τ ′ \ C′ and
A ` e : τ \ C, where τ = t, and C′ ∪ {τ ′ <: t} ⊆ C. Since τ ′ <: t ∈ C and
C ⊆ C′′, we have C′′ |= τ ′ � τ . Since C′ ⊆ C and C ⊆ C′′, we have C′′ |= C′.

—Case 3: e = if0n e1 e2, e′ = e2. This case can be proved in a similar way as the
case 2.

—Case 4: e = (λx.e1)
l v, e′ = e1[v/x]. By rule (Abs), A, {x : t} ` e1 : τ1 \ C1,

and A ` (λx.e1)
l : (∀ t . t → τ1 \ C1)

l \ {}. By the (Int) or (Abs)
rule, A ` v : τv \ {}. And, by rule (Appl), A ` e : τ \ C, where
τ = t2, C = {(∀ t . t → τ1 \ C1)

l <: t1 → t2, τv <: t1}. Since C′′ is a closure of
C, constraints generated by applying the (∀-Elim) closure rule on C are in C′′.
Thus, there exists a renaming Θ s.t. Θ(C1)∪{τv <: Θ(t), Θ(τ1) <: t2} ⊆ C′′. By
Renaming Lemma (Lemma 4.10), we have A, {x : Θ(t)} ` e1 : Θ(τ1) \ Θ(C1).
Applying Substitution Lemma (Lemma 4.11) on this constraint, we have: A `
e1[v/x] : τ ′ \ C′ s.t. {τv <: Θ(t)} |= τ ′ � Θ(τ1), and for any constraint
τ2 <: τ ′

2 ∈ C′, there exists τ ′′

2 s.t. {τv <: Θ(t)} |= τ2 � τ ′′

2 , and τ ′′

2 <: τ ′

2 ∈ Θ(C1).
Since Θ(τ1) <: t2 ∈ C′′, C′′ |= Θ(τ1) � t2. Since {τv <: Θ(t)} |= τ ′ � Θ(τ1),
and τv <: Θ(t) ∈ C′′, C′′ |= τ ′ � Θ(τ1). By transitivity, C′′ |= τ ′ � t2. To show
C′′ |= C′, we take an arbitrary constraint τ2 <: τ ′

2 ∈ C′ and show that C′′ |= τ2 �
τ ′

2. There exists τ ′′

2 s.t. {τv <: Θ(t)} |= τ2 � τ ′′

2 , and τ ′′

2 <: τ ′

2 ∈ Θ(C1). Since
τv <: Θ(t) ∈ C′′ and Θ(C1) ⊆ C′′, we have C′′ |= τ2 � τ ′′

2 and C′′ |= τ ′′

2 � τ ′

2.
By transitivity, C′′ |= τ2 � τ ′

2. Hence C′′ |= C′.

—Case 5: e = vl, e′ = v. By the (Label) rule, since we have A ` vl : τ \ C, we
have A ` v : τ \ C1 and C = C1 ∪ {τ <: l}. By the (Int) or (Abs) rule, we
have τ = τv , C1 = {}, and C = {τv <: l}. Since C′′ |= τv � τv and C′′ |= {}, the
lemma holds in this case.

2

We now establish the subject-reduction property on the standard reduction re-
lation.

Lemma 4.13 (Subject Reduction on 7−→). If e1 7−→ e2, A ` e1 : τ1 \ C1,

and C is a closure of C1, then there exist τ2 and C2 s.t. A ` e2 : τ2 \ C2,

C |= τ2 � τ1 and C |= C2.

Proof: Since e1 7−→ e2, there exists an evaluation context E s.t. e1 = E[e′1],
e2 = E[e′2], and e′1 −→ e′2. We prove the lemma with an induction on the size of E.

—Case 1: E = [ ]. The lemma trivially follows from the Subject Reduction Lemma
on −→.

—Case 2: E = E1 e. Since A ` E1[e
′

1] e : τ1 \ C1, by (Appl) rule, we have:
A ` E1[e

′

1] : τ ′

1 \ C′

1, A ` e : τe \ Ce, τ1 = t2, and C1 = {τ ′

1 <: t1 → t2, τe <:
t1} ∪C′

1 ∪Ce. Since C is a closure of C1, C is superset of a closure of C′

1. Thus,
by induction, A ` E1[e

′

2] : τ ′

2 \ C′

2 s.t. C |= τ ′

2 � τ ′

1 and C |= C′

2. Apply
(Appl) rule with t1 → t2 as the arrow type for the application, we have: A `
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E1[e2] e : τ2 \ C2, where τ2 = t2 and C2 = {τ ′

2 <: t1 → t2, τe <: t1} ∪ C′

2 ∪ Ce.
First, C |= t2 � t2. Secondly, consider constraint τ3 <: τ ′

3 ∈ C2. If τ3 <: τ ′

3 ∈ C′

2,
since C |= C′

2, C |= τ3 � τ ′

3; If τ3 <: τ ′

3 ∈ Ce, since Ce ⊆ C1 ⊆ C, C |= τ3 � τ ′

3;
If τ3 <: τ ′

3 is τ ′

2 <: t1 → t2, since τ ′

1 <: t1 → t2 ∈ C1 ⊆ C and C |= τ ′

2 � τ ′

1,
C |= τ ′

2 � t1 → t2; If τ3 <: τ ′

3 is τ <: t1, since τ <: t1 ∈ C1 ⊆ C, C |= τ � t1.
Hence, C |= C2.

—Case 3: E = v E1. This case can be proved in a similar way as the case 2.

—Case 4: E = succE1. Since A ` succE1[e
′

1] : τ1 \ C1, by (Succ) rule, we
have: A ` E1[e

′

1] : τ ′

1 \ C′

1, τ1 = int, and C1 = {τ ′

1 <: int } ∪ C′

1. Since C is
superset of a closure of C′

1, by induction, A ` E1[e
′

2] : τ ′

2 \ C′

2 s.t. C |= τ ′

2 � τ ′

1

and C |= C′

2. Apply (Succ) rule, we have: A ` succE1[e
′

2] : τ2 \ C2, where
τ2 = int and C2 = {τ ′

2 <: int } ∪ C′

2. First, C |= int � int. Secondly, consider
constraint τ3 <: τ ′

3 ∈ C2. If τ3 <: τ ′

3 ∈ C′

2, since C |= C′

2, C |= τ3 � τ ′

3; if τ3 <: τ ′

3

is τ ′

2 <: int , since τ ′

1 <: int ∈ C1 ⊆ C, and C |= τ ′

2 � τ ′

1, thus C |= τ ′

2 � int.
Hence, C1 |= C2.

—Case 5: E = if0E1 e3 e4. Since A ` if0E1[e
′

1] e3 e4 : τ1 \ C1, by (If0) rule, we
have: A ` E1[e

′

1] : τ ′

1 \ C′

1, A ` e3 : τ3 \ C3, A ` e4 : τ4 \ C4, τ1 = t, and
C1 = {τ ′

1 <: int , τ3 <: t, τ4 <: t}∪C′

1∪C3∪C4. Since C is also a closure of C′

1, by
induction, A ` E1[e

′

2] : τ ′

2 \ C′

2 s.t. C |= τ ′

2 � τ ′

1 and C |= C′

2. Apply (If0) rule
with t as the type for if0E1[e2] e3 e4, we have: A ` if0E1[e2] e3 e4 : τ2 \ C2,
where τ2 = t and C2 = {τ ′

2 <: int , τ3 <: t, τ4 <: t} ∪ C′

2 ∪ C3 ∪ C4. First,
C |= t � t. Secondly, consider constraint τ5 <: τ ′

5 ∈ C2. If τ5 <: τ ′

5 ∈ C′

2, since
C |= C′

2, C |= τ5 � τ ′

5; If τ5 <: τ ′

5 ∈ C3, since C3 ⊆ C1 ⊆ C, C |= τ5 � τ ′

5; If
τ5 <: τ ′

5 ∈ C4, since C4 ⊆ C1 ⊆ C, C |= τ5 � τ ′

5; If τ5 <: τ ′

5 is τ ′

2 <: int , since
τ ′

1 <: t ∈ C1 ⊆ C, and C |= τ ′

2 � τ ′

1, thus C |= τ ′

2 � int; If τ5 <: τ ′

5 is τ3 <: t,
since τ3 <: t ∈ C1 ⊆ C, C |= τ3 � t; If τ5 <: τ ′

5 is τ4 <: t, since τ4 <: t ∈ C1 ⊆ C,
C |= τ4 � t. Hence, C |= C2.

—Case 6: E = El
1. Since A ` E1[e

′

1]
l : τ1 \ C1, by (Label) rule, we have:

A ` E1[e
′

1] : τ1 \ C′

1, and C1 = {τ1 <: l} ∪ C′

1. Since C is superset of a
closure of C′

1, by induction, A ` E1[e
′

2] : τ ′

2 \ C′

2 s.t. C |= τ ′

2 � τ1 and
C |= C′

2. Apply (Label) rule, we have: A ` E1[e
′

2]
l : τ2 \ C2, where τ2 = τ ′

2

and C2 = {τ ′

2 <: l} ∪ C′

2. First, since C |= τ ′

2 � τ1 and τ2 = τ ′

2, C |= τ2 � τ1.
Secondly, consider constraint τ3 <: τ ′

3 ∈ C2. If τ3 <: τ ′

3 ∈ C′

2, since C |= C′

2,
C |= τ3 � τ ′

3; If τ3 <: τ ′

3 is τ ′

2 <: l, since τ1 <: l ∈ C1 ⊆ C and C |= τ ′

2 � τ1,
C |= τ ′

2 � l. Hence, C |= C2.

2

We are now ready to prove the Subject Reduction Theorem:

Theorem 4.14 (Subject Reduction). If e
∗

7−→ e′, ` e : τ \ C, and C′′ is

a closure of C, then there exist τ ′ and C′ s.t. ` e′ : τ ′ \ C′, C′′ |= τ ′ � τ , and

C′′ |= C′.

Proof: We use an induction on the length of the reduction sequence e
∗

7−→ e′.
Suppose e 7−→ e1 and e1

∗

7−→ e′. By Lemma 4.13, ` e1 : τ1 \ C1, C′′ |= τ1 � τ
and C′′ |= C1. By Lemma 4.7, there exists a closure C′

1 of C1 s.t. C′′ |= C′

1. Since

e1
∗

7−→ e′, by induction, there exist τ ′ and C′ s.t. ` e′ : τ ′ \ C′, C′

1 |= τ ′ � τ1, and
C′

1 |= C′. Since C′′ |= C′

1, by Corollary 4.9, we have C′′ |= τ ′ � τ , and C′′ |= C′. 2
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4.3 Type Soundness and Flow Soundness

We now prove the type soundness of the type inference framework. For expression
e, we say the evaluation of e does not go wrong, if it is not the case that: e

∗

7−→
e′ and e′ contains a subexpression of any of the following forms: succ (λx.e)l;
if0 (λx.e)l e1 e2; n e.

Theorem 4.15 (Type Soundness). If ` e : τ \ C, C′ is a closure of C,

and C′ is type-safe, then the evaluation of e cannot go wrong.

Proof: Suppose the evaluation of e does go wrong, then there exists e′ s.t.
e

∗

7−→ e′ and e′ contains a subexpression of any of the following forms: succ (λx.e)l;
if0 (λx.e)l e1 e2; n e. Thus, for any derivation ` e′ : τ ′ \ C′′, C′′ is not type-safe.

Furthermore, since ` e : τ \ C, C′ is a closure of C, and e
∗

7−→ e′, by Theorem
4.14, we have ` e′ : τ ′ \ C′′ and C′ |= C′′. Since C′′ is not type-safe, there exists
int <: t1 → t2 ∈ C′′ or (∀ t . t → τ1 \ C1)

l <: int ∈ C′′. If int <: t1 → t2 ∈ C′′,
C′ |= int � t1 → t2. By Lemma 4.2 and Lemma 4.4, int <: t1 → t2 ∈ C′. If
(∀ t . t → τ1 \ C1)

l <: int ∈ C′′, C′ |= (∀ t . t → τ1 \ C1)
l � int ∈ C′′. By Lemma

4.2 and Lemma 4.4, there exists (∀ t . t → τ2 \ C2)
l <: int ∈ C′. Thus, C′ is not

type-safe, and this is a contradiction. 2

Theorem 4.16 (Flow Soundness). For program e, if ` e : τ \ C, and C′

is a closure of C, then: if e
∗

7−→ E[nl], then int <: l ∈ C′; if e
∗

7−→ E[vl] where

v = (λx.e1)
l1 , then (∀ t . t → τ1 \ C1)

l1 <: l ∈ C′.

Proof: Suppose e
∗

7−→ E[vl]. By Theorem 4.14, we have ` E[vl] : τ ′ \ C′′

and C′ |= C′′. An induction on the structure of evaluation context E can prove
that there must be derivations ` v : τv \ {} and ` vl : τv \ {τv <: l} which
are sub-derivations of ` E[vl] : τ ′ \ C′′, and τv <: l ∈ C′′. Since C′ |= C′′,
we have C′ |= τv � l. By Lemma 4.2 and Lemma 4.4, we have: if v = n, then
τv = int and int <: l ∈ C′; if v = (λx.e1)

l1 , then τv = (∀ t . t → τ2 \ C2)
l1 ,

C′ |= (∀ t . t → τ2 \ C2)
l1 � (∀ t . t → τ1 \ C1)

l1 , and (∀ t . t → τ1 \ C1)
l1 <: l ∈ C′.

2

The flow soundness theorem ensures the correctness of any flow analysis obtained
from our type inference framework: if an expression evaluates to a data value at
run-time, then, the flow analysis statically predicts that the data value would flow
to the expression.

5. ANALYZING OBJECT-ORIENTED LANGUAGES

In this section, we present a polymorphic constraint-based type inference framework
for object-oriented languages. It extends the basic type inference framework studied
in section 2 with the ability to analyze object-oriented languages.

Definition 5.1 (The Object Language).

e ::= . . . | new δ | e.f | e.f = e | e.m(e) | this | (δ)e | e; e

| class Object { } | class δ extends δ′ { f ; m(x)e }

where e ∈ Expression, e is an expression list, {x, this} ∈ Variable, x is an vari-
able list, {l, f, m} ⊆ Label, f is an label list, and {δ, δ′, Object} ⊆ ClassName ⊆
Variable.
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The language defined above extends the language in Section 2.1 with key object-
oriented language features. The object-oriented part of the language is basically the
Featherweight Java [Igarashi et al. 2001] extended with field assignments (e.f = e).
For simplicity, we omit the class constructors, which can be analyzed as global func-
tions with an extra parameter “this”. A class definition class δ extends δ′ { f ; m(x)e }
defines class δ with δ′ as the parent class, f as the field variable list, and m(x)e
as the instance method list. Object is a special class without fields and methods.
As in Featherweight Java, if the receiver for a field access or method invocation
is “this”, the receiver needs to be explicitly written out as this. To analyze the
object-oriented language, additional types need to be defined.

Definition 5.2 (Types). The type grammar is as follows.

τ ∈ Type ::= t | τv | (∀ t . τ \ C) | [ l : τ ] |
(t1 × . . . × tn) → τ | cast(δ, t) |
read τ | write τ

t ∈ TypeVar ⊃ ImpTypeVar

u ∈ ImpTypeVar

δ ∈ ClassName

τv ∈ ValueType ::= int | ⊥ | obj(δ, [ li : τi ])
t ∈ TypeVarSet = Pfin(TypeVar)
l ∈ FieldAndMethodIdentifier

τ1 <: τ2 ∈ Constraint

C ∈ ConstraintSet = Pω(Constraint)

In the above definition, ValueType denotes the types for data values, which include
primitive type int, object types and bottom type ⊥. The type ⊥ (also written as
null) is the type for null value.

The type for an object value is of form obj(δ, [ li : τi ]), where δ is the name of
the corresponding class, and the notation [ li : τi ] enumerates the type for every
instance field and instance method of the object. An arrow type (t1× . . .× tn) → τ
represents a method invocation with ti as arguments and τ as the result. The type
scheme we define here is the same as the type scheme defined in the framework of
Section 2 except that the type scheme here can have multiple formal arguments.

Read and write operations on instance fields are analyzed with types read τ and
write τ . Type [ l : τ ] is used for analyzing access of an instance field or invocation
of an instance method, where l is the identifier of the field/method, and τ is the type
specifying the usage of the field/method. A downcast operation (δ)e is analyzed
with type cast(δ, t), where t is the type for the result of the downcast operation.

5.1 Constraint Generation

We now define the constraint generation process for the object-oriented language.
Analysis of more advanced features in Java such as exceptions and inner classes
will be discussed later.

In addition to the rules in Figure 1, more type inference rules are defined in
Figure 3.

Every class is analyzed with a constraint (∀ t . t0 → obj(δ, [ li : τi ]) \ {}) <: tδ,
where tδ is a special type variable generated for the class, and the type scheme is
the creation-type-scheme for the class. For analyzing forward or recursive references
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(Seq)
A ` e1 : τ1 \ C1, {τ <: tδ} ⊆ C1, A, {δ : τ} ` e2 : τ2 \ C2

A ` e1; e2 : τ2 \ C1 ∪C2

(Read)
A ` e : τ \ C

A ` e.f : t \ {τ <: [ f : read t ]} ∪C

(Write)
A ` e1 : τ1 \ C1, e2 : τ2 \ C2

A ` e1.f = e2 : τ2 \ {τ1 <: [ f : write τ2 ]} ∪ C1 ∪ C2

(Cast)
A ` e : τ \ C

A ` (δ)e : t \ {τ <: cast(δ, t)} ∪ C

(Meth)
A, {xi : ti, this : t′} ` e : τ \ C

A ` m(xi)e : (∀ t . (ti × t′)→ τ \ C) \ {}
where t = FTV ((ti × t′)→ τ \ C) − FTV (A)− Tδ

(Msg)
A ` e : τ \ C, A ` ei : τi \ Ci

A ` e.m(ei) : t \ {τ <: [ m : (ti × t′)→ t ], τi <: ti} ∪C ∪ Ci

(Obj)
A ` class Object { } : tObject \ {(∀ {t}. t→ obj(Object, [ ]) \ {}) <: tObject}

(New)
A ` new δ : t \ {tδ <: t′ → t, null <: t′}

(Class)
A(δ′) = (∀ t

′

. t′0 → obj(δ′, [ f ′ : u′, m′

i : τ ′

i ]) \ {}), A ` mj(x)ej : τj \ {}

A ` class δ extends δ′ { f ; mj(x)ej } : tδ \ {τ
′′ <: tδ}

where τ ′′ = (∀ t . t0 → obj(δ, [ f ′ : u′′, f : u, mj : τj , mk : τk ]) \ {}),

{mk} = {m′

i} − {mj}, τk = τ ′

i for each mk = m′

i,

and t = FTV (t0 → obj(δ, [ f ′ : u′′, f : u, mj : τj , mk : τk ]) \ C)− FTV (A) − Tδ

Fig. 3. Type Inference Rules for Objects

of class definitions, a special type variable tδ is generated for every class δ in the
program. The set of all such type variables is written as Tδ in Figure 3. The
creation-type-scheme for class δ is of the form (∀ t . t0 → obj(δ, [ li : τi ]) \ {}),
which is a type scheme for a function returning an object upon application. In
the object type obj(δ, [ li : τi ]) \ {}), every instance field is associated with a
fresh imperative type variable u, which is bound in the type scheme. The (New)
rule analyzes new δ with constraints {tδ <: t′ → t, null <: t′}. Thus, object
creation is analyzed as a special form of function application. This allows the
possibility of generating different object types by instantiating the creation-type-
scheme differently. As we will discuss in Section 6, this is vital for precise analysis
of data-polymorphic programs.

The (Obj) rule assigns class Object with creation-type-scheme (∀ {t}. t →
obj(Object, [ ]) \ {}). The (Class) rule assigns class δ with creation-type-scheme

(∀ t . t0 → obj(δ, [ f ′ : u′′, f : u, mj : τj , mk : τk ]) \ {}), where the type for each
field is a fresh imperative type variable, the type for each method mj defined in δ
is τj , and the types for all other methods mk are inherited from the parent class.
The (Seq) rule analyzes a sequential composition e1; e2. By adding {δ : τ} to the
typing environment, it makes the types for the classes δ defined in e1 available for
analyzing e2.

The (Meth) rule assigns an instance method m(xi)e with type (∀ t . (ti × t′) →
τ \ C), where ti are type variables for the formal arguments xi, t′ is the type
for “this”, τ is the return type, C collects constraints generated for the method
body e, and t collects type variables locally generated when analyzing this method.
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By adding an extra argument for “this”, we avoid altering the type scheme of an
instance method when it is inherited by subclasses. A method invocation is analyzed
by the (Msg) rule, in which t′ is the extra “this” argument, and constraints τi <: ti
model the flow from actual arguments to formal arguments.

The (Write) rule analyzes e1.f = e2 with constraint τ1 <: [ f : write τ2 ], meaning
that e1 is expected to be an object that has field f , and this field is written with a
value of type τ2. Similarly, the (Read) rule analyzes e.f with constraint τ <: [ f :
read t ], meaning that e is expected to be an object that has field f , and the type of
reading this field is t. The (Cast) rule analyzes (δ)e with constraint τ <: cast(δ, t),
meaning that the type of e is subject to a downcast operation to δ and t is the type
for the result of the cast operation.

5.2 Computation of the Closure

After generating the initial set of constraints corresponding to the program text,
the inference algorithm computes the complete flow information by applying the set
of closure rules in Figure 4 to the constraint set. Each rule here specifies a condition
under which more constraints are generated, following the format of Section 2. The
closure computation starts with the initial constraint set, and the closure rules are
applied until no more constraints can be generated.

The (Trans) rule is unchanged from the functional framework. The (Read) rule
applies when an object of type obj(δ, [ l : u, . . . ]) reaches a read operation on field
l, and the result of the read is of type τ . The (Write) rule applies when a write
operation on instance field l is applied to an object whose field l is of type u. The
(Cast) rule enforces the Java run-time typecast mechanism. Recall that cast(δ′, τ)
is the type for a downcast operation casting an expression to Java type δ′, with τ
as the type for the result of the cast operation. The rule applies when an object of
type obj(δ, [ li : τi ]) is subject to the cast operation. If δ is a Java subtype of δ′, the
cast succeeds and the object becomes the result of the cast expression. Otherwise,
the cast fails and the downcast is recorded as unsafe by the inference algorithm.
Here the “Java type” means Java interface or class, and we say δ is a Java subtype
of δ′ if only if δ is a subtype of δ′ according to the Java static type system. This
rule is more general than what is needed for the core object language we defined in
which δ′ can only be a class.

The (Message) rule applies when an object reaches the receiver position of an
instance method invocation. Since the last formal argument of the method’s type
scheme is for the receiver of the method invocation, a new arrow type is created by
putting the type of the actual receiver object as the last argument, and a constraint
is generated for invoking the method with the actual arguments specified by the
new arrow type. To avoid mixing applications of different object types reaching
the receiver position of the same method invocation, a fresh new type variable t′

replaces t′n in the new arrow type.
The most important closure rule is (∀-Elim), which models method invocation

and object creation. It is the (∀-Elim) rule in Figure 2 extended to allow multiple
arguments. Constraints τvi <: t′i indicate that values of type τvi flow in as the
actual arguments. At run-time each method invocation allocates fresh locations
on the stack for all local variables and parameters of the method. To model this

behavior in the analysis, a renaming Θ ∈ TypeVar
p
→ TypeVar is applied to
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(Trans)
τv <: t, t <: τ

τv <: τ

(Read)
obj(δ, [ l : u, . . . ]) <: [ l : read τ ]

u <: τ

(Write)
obj(δ, [ l : u, . . . ]) <: [ l : write τ ]

τ <: u

(Cast)
obj(δ, [ li : τi ]) <: cast(δ′, τ ), δ Java-subtype-of δ′

obj(δ, [ li : τi ]) <: τ

(Message)
obj(δ, [ l : (∀ t . τ \ C), . . . ]) <: [ l : (t′1 × . . . × t′n) → τ ′ ]

(∀ t . τ \ C) <: (t′1 × . . . × t′n−1 × t′) → τ ′, obj(δ, [ l : (∀ t . τ \ C), . . . ]) <: t′

(∀-Elim)
(∀ t . (t1 × . . . × tn) → τ \ C) <: (t′1 × . . . × t′n) → τ ′, τvi <: t′i
τvi <: Θ(ti), Θ(τ ) <: τ ′, Θ(C)

Fig. 4. Constraint Closure Rules for Objects

type variables in t , similarly to the functional framework. The nCFA instantiation
of the framework follows the functional one given in Section 3. To obtain a CPA
instantiation here, Θ in the (∀-Elim) rule is defined as follows:

For each α ∈ t , Θ(α) = ατv1×...×τvn .

The contours Θ are generated based on all actual argument types τvi, thus two
invocations of the method share the same contour if and only if all actual argument
types are the same. The original CPA algorithm [Agesen 1996] uses the cartesian
product of class names of argument values for contour selection. Our CPA definition
differs in that we use object types rather than class names. Because CPA only
generates one object type per class, our formulation of CPA behaves the same as
the original CPA.

A concrete class analysis is a standard object-oriented program analysis in which
a conservative approximation to the set of classes a given expression could take on
at run time is made. It is defined similarly to how a flow analysis was defined for
the functional language, replacing function labels l with class names δ.

Definition 5.3 (Concrete Class Analysis). For an expression e in the pro-
gram, if the type variable for e is t by the inference rules, the set of concrete
classes for e, CC(e), is the set of classes, such that if the closure contains constraint
obj(δ, [ li : τi ]) <: t′, and t′ is an instantiation of t, then δ ∈ CC(e).

For example, analyzing the program of Figure 5 with the 0CFA or CPA algorithm
produces CC(ht1.get(”zero”)) = {Boolean, Integer}.

We do not present a soundness proof of the object-oriented type inference frame-
work due to space considerations. We take an approach based on an encoding of
objects into an extended functional language. The functional language defined in
Section 2 can be extended with records and references, and the type inference frame-
work and the soundness proof can be extended accordingly. Eifrig et al. [1995b]
presents such a language with a sound constraint-based type inference system.
This aforecited system has let-polymorphism only, and so a combination of this
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import java.util.Hashtable;

class A {

public static void main(String args[]) {

Hashtable ht1=new Hashtable();

Hashtable ht2=new Hashtable();

ht1.put("zero", new Integer(0));

ht2.put("true", new Boolean(true));

Integer i=(Integer)ht1.get("zero");

}

}

Fig. 5. Java program with data polymorphism

paper with the results of Section 2 will provide soundness. The existing type rules
are compatible with the record and reference extensions, the main drawback with
adding these features is the overall increase in complexity.

Once this framework with records and references has been defined, the soundness
of the object-oriented framework can be established by translating it into this ex-
tended language using a standard object-encoding mechanism. Eifrig et al. [1995a]
presents one example of how the translation approach can be used to establish
soundness of object-based type systems.

6. DATA POLYMORPHIC ANALYSIS

In this section we study data polymorphism. We first give a detailed introduction to
the concept of data polymorphism, illustrate the imprecision of 0CFA and CPA for
data-polymorphic programs, and discuss the difficulty which data polymorphism
brings to type inference. We then introduce Data-Polymorphic CPA (DCPA), a
novel algorithm which extends CPA with the ability to effectively analyze data-
polymorphic programs.

6.1 Motivation

Data polymorphism is defined in [Agesen 1996] as the ability of an imperative
program variable to hold values of different types at run-time. For example, a field
declared to be of type Object in Java can store objects of any class. Hence objects
created from the same class can behave differently with their fields assigned with
values of different types. Recall that object creation new C() is analyzed with
constraints (∀ t . τ \ C) <: t → [[new C()]]1 and null <: t, where (∀ t . τ \ C) is the
creation-type-scheme of class C. For 0CFA and CPA, the (∀-Elim) rule generates
only one contour for the creation-type-scheme of every class, and a single object
type is assigned to all objects created from a given class. This may lead to a
precision loss in the analysis result.

Consider the program of Figure 5. Two instances of Hashtable are created
and used differently, yet CPA allows them to share the same object type, and the
analysis would imprecisely conclude that the result of ht1.get("zero") includes
Boolean objects. If on the other hand two separate object types were used for the
two Hashtable instances, this downcast would be statically verified as sound.

1To ease presentation, we write the type variable for expression e as [[e]]
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In order to more accurately analyze such programs, we have developed a Data-
Polymorphic CPA (DCPA) algorithm, which extends CPA to effectively analyze
data polymorphic programs. The basic idea is to divide CPA contours into two
categories: those unrelated to data polymorphism which can be shared without
losing precision (the CPA-safe or reusable contours), and those related to data
polymorphism and thus sharing such contours might cause a loss of precision (the
CPA-unsafe contours). The DCPA algorithm generally follows CPA, but after every
contour is generated it judges the contour to be CPA-safe or CPA-unsafe; when
there is a need to reuse an existing contour, yet the contour is already judged to
be CPA-unsafe, the DCPA algorithm would generate a fresh contour instead of
reusing the existing one. The DCPA algorithm aims to be precise by detecting
as CPA-unsafe those contours which exhibit data polymorphism, and aims to be
efficient by declaring as many contours CPA-safe as possible.

We now discuss the idea in detail. We first consider the analysis of object cre-
ations. Recall that an object creation expression new C() is analyzed with a pair
of constraints (∀ t . τ \ C) <: t → [[new C()]] and null <: t, where (∀ t . τ \ C) is
the creation-type-scheme of class C. We will call such a pair of constraints a cre-

ation point of class C. If a class contains any polymorphic field (field which may
store values of different types according to Java’s static type system), the DCPA
algorithm always judges contours of the creation-type-scheme of such a class as
CPA-unsafe. Thus, for any creation point of a class with polymorphic fields, a
fresh object type is generated for the class. On the other hand, if a class (e.g. class
java.lang.Integer) contains no polymorphic fields, the DCPA algorithm would
judge the contour of the class’s creation type scheme as CPA-safe, thus all objects
of the class share a single object type.

We now consider contours generated for method invocations. If CPA loses preci-
sion because of data polymorphism, there must be multiple objects from the same
class such that those objects are used differently at run-time yet CPA lets them
share the same object type. The goal of the DCPA algorithm is to generate more
contours so that such imprecision can be avoided. However, the DCPA algorithm
should also be efficient and only generate more contours when necessary. Thus, if a
method invocation doesn’t cause the creation of any objects, the contour for such
a method invocation is marked CPA-safe and can be reused. For example, consider
the program in Figure 6. The DCPA algorithm would let the two invocations of
the method id share a single CPA-safe contour.

Furthermore, if a method invocation creates objects, but the objects created do
not escape the method scope via the return value directly, then the contour for such
a method invocation is also CPA-safe. Consider the program in Figure 6. Since the
two invocations of method g have the same argument type, CPA would let them
share a single contour. The two invocations create two Vector instances, but the
two instances escape the scope of g only through static field a, not through the
return values. If two distinct contours were used for the two invocations of method
g, there would be two creation points of class Vector, and there would be two
distinct object types generated for Vector. But the two object types would both
be lower bounds of the type variable for field a. Since the type variable for field
a would be their only upper bound, and our analysis is flow-insensitive, the two
object types would be equivalent in terms of closure computation. Thus, for the
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import java.util.*;

class A {

static Object a;

static Object id(Object x) { return x;}

static Object g(Object x) { a=new Vector(); return x;}

static Object f(Hashtable x) { x.put("DCPA", new Vector()); return x;}

static Object h() {

Vector v=new Vector(); v.addElement(new Boolean(true)); return v;

}

static Object k() {

Vector v=new Vector(); v.addElement(new Hashtable()); return v;

}

public static void main(String args[]) {

Hashtable obj=new Hashtable();

id(obj); id(obj); g(obj); g(obj); f(obj); f(obj);

h(); h(); k(); k();

}

}

Fig. 6. Example Program with CPA-Safe and CPA-unsafe Contours

two invocations of method g, generating two contours would not be beneficial, and
DCPA would let them share a single CPA-safe contour without any loss of precision.
Method f in Figure 6 is another example. Even though a Vector instance is created
locally by f, since the return value (the Hashtable instance) is shared by the two
invocations, DCPA would let the two invocations share the same CPA-safe contour
without any loss of precision. Similarly, for any Java method whose return type is
void or int, all contours are CPA-safe.

Even if an object created by a method invocation escapes the method scope
through the return value, if the fields of the object are already assigned values of
fixed types, such an invocation is also considered CPA-safe. For example, consider
method h in Figure 6. A Vector object is created and returned by the method. But
before it is returned, a Boolean object is already put in the vector. Thus the two
vectors created by the two invocations of h would both have contents of Boolean
type. The DCPA algorithm would let the two invocations of method h share a single
contour. In contrast, the DCPA algorithm would generate two separate CPA-unsafe
contours for the two invocations of method k in Figure 6.

For some programs, even with the above strategy which aims to identify as many
CPA-safe contours as possible, there are still too many contours generated. To
make the algorithm feasible, an additional unification heuristic is incorporated into
the DCPA algorithm. The idea is whenever two object types of the same class
“flow together” (i.e., become lower bounds of a single type variable), the algorithm
assumes that the data structures represented by the two object types would be
used in the same way and it unifies the two object types. Although this unification
mechanism could in theory cause precision loss, in practice we have found that such
cases are rare.

6.2 The DCPA Algorithm

In this section we define the DCPA algorithm. DCPA is only a closure algorithm.
The initial set of constraints are those produced by the inference rules in the frame-
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Algorithm DCPA(C0,Ω, S)
1 if C1 ⊆ C0 and applying a non-(∀-Elim) rule on C1 results in C2 and C2 6⊆ C0

2 then return DCPA(C0 ∪ C2,Ω, S)
3 if {(∀ t . (t1 × . . .× tn)→ τ \ C) <: (t′1 × . . .× t′n)→ τ ′, τvi <: t′i} ⊆ C0

4 and no Θ s.t. {τvi <: Θ(ti),Θ(τ) <: τ ′} ∪Θ(C) ⊆ C0

5 then if (C′

0, (∀ t . (t1 × . . .× tn)→ τ \ C), τvi
′,Θ′, i′) ∈ Ω and (τvi = τvi

′ or

6 (∀ t. (t1 × . . .× tn)→ τ \ C) ∈ S and JavaType(τvi) = JavaType(τvi
′))

7 then return DCPA(C0 ∪ {τvi <: Θ(ti), Θ′(τ) <: τ ′} ∪Θ′(C), Ω, S)
8 else Θ← a fresh renaming on type variables in t
9 ρ← (C0, (∀ t. (t1 × . . .× tn)→ τ \ C), τvi,Θ, i)

10 C1 ← C0 ∪ {τvi <: Θ(ti)} ∪Θ(C)

11 (C2,Ω′)← DCPA(C1,Ω ∪ {ρ}, S ∪ {(∀ t . (t1 × . . .× tn)→ τ \ C)})
12 if Θ(τ)is incomplete for ρ in C2

13 then Ω′ ← Ω′ − {ρ}
14 return DCPA(C2 ∪ {Θ(τ) <: τ ′}, Ω′, S)
15 return (C0,Ω)

Fig. 7. DCPA Algorithm without unification

work defined in Section 5. The closure computation starts with the initial constraint
set. Applying a closure rule on the constraint set results in more constraints added
to the constraint set. Such a process continues until no more constraints can be
added to the constraint set. Thus there exists a current constraint set before any
rule application. Recall that the (∀-Elim) rule in the framework is defined as fol-
lows:

(∀-Elim)
(∀ t . (t1 × . . . × tn) → τ \ C) <: (t′1 × . . . × t′n) → τ ′, τvi <: t′i
τvi <: Θ(ti), Θ(τ ) <: τ ′, Θ(C)

First, we define the representation of contour, which records information about
a (∀-Elim) rule application in the closure computation.

Definition 6.1 (Contour). A contour ρ is a tuple of form (C0, (∀ t . (t1 ×
. . . × tn) → τ \ C), τvi, Θ, i), where C0 is the current constraint set before the
∀-elimination, (∀ t . (t1 × . . . × tn) → τ \ C) is the ∀-type, τvi is the vector of the
actual argument types, Θ is the renaming on t used by the ∀-elimination, and i is
the unique identifier for this contour.

We define the state of a closure computation as follows:

Definition 6.2 (Closure State). A closure state is a tuple (C, Ω, S), where C
is the current constraint set, Ω is the contour cache, which is the set of reusable
contours, and S is a set of ∀-types.

We first define a DCPA algorithm without unification in Figure 7. The algo-
rithm is defined as a recursive function which takes a closure state as input and
returns a pair (C, Ω) as output. The closure computation starts with an initial
closure state (C0, Ω0, S0), where C0 is the initial constraint set produced by infer-
ence rules, and Ω0 and S0 are empty sets. The closure computation finishes when
DCPA(C0, Ω0, S0) returns (C1, Ω1), where constraint set C1 is the result closure.

In Figure 7, lines 1 and 2 describe the non-(∀-Elim) rule application case: if C1

in the current constraint set is subject to a non-(∀-Elim) rule application, and the
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rule has not been applied to C1 yet, the algorithm applies the rule and adds the
resulting constraints C2 to the current constraint set.

Lines 3 to 14 describe the case of (∀-Elim) rule applications. The condition in
line 3 means that the constraints {(∀ t . (t1× . . .× tn) → τ \ C) <: (t′1× . . .× t′n) →
τ ′, τvi <: t′i} in current constraint set C0 are subject to (∀-Elim) rule application,
and the condition in line 4 means that the (∀-Elim) rule has not been applied
to those constraints yet. Under such conditions, the algorithm applies the (∀-
Elim) rule by either reusing an existing contour or creating a new one. Lines 5
to 7 describe the reusing contour case. When a new contour is generated for a
∀-elimination, the algorithm adds the ∀-type to S when computing the closure for
all constraints generated from the ∀-elimination (see the recursive call on DCPA in
line 11). Thus, at line 6, the condition (∀ t . (t1× . . .× tn) → τ \ C) ∈ S means that
the method invocation corresponding to the ∀-elimination is considered recursive
by the algorithm, and S is the set of ∀-types approximating the call-path leading
to the method invocation. The condition in lines 5 to 6 means that there is already
a contour in the resuable contour cache for the same ∀-type, and either τvi = τvi

′,
which means the contour and the current ∀-elimination share the same argument
types, or the method invocation is considered recursive and the argument types for
the contour and current ∀-elimination are of the same Java types. In such a case,
the algorithm reuses the contour by using the same renaming Θ′ of the contour for
this ∀-elimination. The recursive detection is to ensure the termination of DCPA.
For recursive method invocations, DCPA selects contour in the same way as CPA:
different object types of the same class (Java type) are considered equivalent.

Lines 8 to 14 describe the case of new contour creation. In this case, since
there is no contour in Ω to reuse, the algorithm creates a new contour ρ, which is
defined in lines 8 and 9. The contour corresponds to a function application (method
invocation or object creation). The algorithm needs to judge if the contour is
reusable (CPA-safe) or not. Thus, as discussed in section 6.1, the algorithm needs
to know the following properties about the function application: whether an object
is created locally by the function application; whether an object is reachable from
the return value; what the type for an object is when the function returns. To do
that, the algorithm needs to determine the set of local constraints corresponding
to the local computation of the function application. According to the (∀-Elim)
closure rule, this ∀-elimination would generate such a set of constraints: {τvi <:
Θ(ti), Θ(τ) <: τ ′} ∪Θ(C), in which constraints τvi <: Θ(ti) correspond to the flow
from actual arguments to formal arguments for this function application, constraints
Θ(C) correspond to the function body, and Θ(τ) <: τ ′ correspond to the flow from
the return value of the function to the application result. All those constraints
except for Θ(τ) <: τ ′ are considered local constraints of the closure. The local
constraint set is initially defined as C1 in line 10. In line 11, the complete local
constraint set C2 for contour ρ is computed via the recursive call. The condition in
line 12 means that the return type Θ(τ) is incomplete for ρ in local constraint set
C2. In such a case, ρ is judged as unreusable (CPA-unsafe). The condition refers
to the following definition:

Definition 6.3 (Incomplete Type). Type τ is defined as incomplete for con-
tour ρ = (C0, (∀ t . (t1 × . . . × tn) → τ \ C), τvi, Θ) in constraint set C1 iff either of
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the following two cases holds:

(1) τ = obj(δ, [ li : τi ]), τ does not appear in C0, and there exists τi which is
incomplete for ρ in C1;

(2) τ = t, for all τv <: t ∈ C1, τv is incomplete for ρ in C1, and for all {τv1 <:
t, τv2 <: t} ⊆ C1, JavaType(τv1) = JavaType(τv2).

Consider a contour ρ and its local constraint set C1. The condition “τ does not
appear in C0” in the first case means that the object type τ is created by generating
contour ρ. Thus, the first case judges an object type τ as incomplete if τ is created
locally by ρ, and some type variables for the fields of τ are judged as incomplete.
The second case judges a type variable t as incomplete if either there is no value
type lowerbound for t in C1 or all value type lowerbounds for t are incomplete

and from the same class. The DCPA algorithm judges ρ as CPA-unsafe if and
only if the return type of ρ is incomplete. If ρ is for an object creation and the
∀-type is a creation-type-scheme for a polymorphic class, the return type of ρ is
an object type with all its field type variables unbounded, thus the return object
type is incomplete and ρ is CPA-unsafe. If ρ is for a method invocation and the
return type of ρ is incomplete, then the return value of the method invocation is
an object created locally within the method scope and, within the method scope,
at least one field of the object is assigned with no values or assigned only with
object values of incomplete types. In such a case, there are objects created locally
by the method invocation which escapes the method scope via the return value
directly, and those objects are not assigned with values of fixed-types (Java primitive
types and object types which are either not incomplete or from multiple different
classes). In such a case, the contour is judged as CPA-unsafe. Thus the definition
of incomplete types implements the ideas discussed in Section 6.1. Consider the
example program in Figure 6. The invocations of methods id, g and f all return
the Hashtable instance created outside the scope of those methods. Thus, for
the contours corresponding to those method invocations, the object type for the
Hashtable instance is not incomplete, the return types for those contours are not
incomplete, and those contours are judged as CPA-safe.

If the contour ρ is unreusable (CPA-unsafe), it is removed from the reusable
contour cache Ω′ in line 13. At line 14, the algorithm continues the closure com-
putation with the updated constraint set and contour cache. Finally, according to
line 15, when no more closure rules can be applied in current constraint set, the
closure computation finishes.

Lemma 6.4. The DCPA algorithm in Figure 7 is an instantiation of the frame-

work in Section 5.

Proof: Consider the algorithm in Figure 7. In lines 1 and 2, all non-(∀-Elim)
closure rules are applied as the framework stipulates. Consider the (∀-Elim) rule.
First, the conditions in lines 3 to 4 ensure that for any combination of the constraints
on which the (∀-Elim) rule is applicable, the rule is applied once and only once, and
there is one and only one renaming Θ used for the rule application. Thus DCPA
gives a well-defined Θ for every (∀-Elim) rule application. When conditions in lines
3 to 4 are satisfied, the (∀-Elim) rule requires the generation of such a constraint
set: C3 = {τvi <: Θ(ti), Θ(τ) <: τ ′} ∪ Θ(C). For the contour reuse case, exactly
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Algorithm DCPA(C0,Ω, S)
1 if {obj(δ, [ li : τi ]) <: t, obj(δ, [ l′i : τ ′

i ]) <: t} ⊆ C0

2 then Θ← U(obj(δ, [ li : τi ]), obj(δ, [ li : τ ′

i ]))
3 if Θ(C0) 6= C0

4 then return DCPA(Θ(C0), Θ(Ω), S)
5 if C1 ⊆ C0 and applying a non-(∀-Elim) rule on C1 results in C2 and C2 6⊆ C0

6 then return DCPA(C0 ∪ C2,Ω, S)
7 if {(∀ t . (t1 × . . .× tn)→ τ \ C) <: (t′1 × . . .× t′n)→ τ ′, τvi <: t′i} ⊆ C0

8 and no Θ exists s.t. {τvi <: Θ(ti), Θ(τ) <: τ ′} ∪Θ(C) ⊆ C0

9 then if (C′

0, (∀ t . (t1 × . . .× tn)→ τ \ C), τvi
′,Θ′, i′) ∈ Ω and (τvi = τvi

′ or

10 (∀ t. (t1 × . . .× tn)→ τ \ C) ∈ S and JavaType(τvi) = JavaType(τvi
′))

11 then return DCPA(C0 ∪ {τvi <: Θ(ti), Θ′(τ) <: τ ′} ∪Θ′(C), Ω, S)
12 else Θ← a fresh renaming on type variables in t
13 ρ← (C0, (∀ t. (t1 × . . .× tn)→ τ \ C), τvi,Θ, i)
14 S′ ← S ∪ {(∀ t . (t1 × . . .× tn)→ τ \ C)}
15 (C2,Ω′)← DCPA(C0 ∪ {τvi <: Θ(ti)} ∪Θ(C), Ω ∪ {ρ}, S′)
16 ρ′ ← (C′

0, (∀ t . (t1 × . . .× tn)→ τ \ C), τvi
′,Θ′, i) s.t. ρ′ ∈ Ω′

17 if Θ′(τ) is incomplete for ρ′ in C2

18 then Ω′ ← Ω′ − {ρ′}
19 return DCPA(C2 ∪ {Θ′(τ) <: τ ′′},Ω′, S)
20 return (C0,Ω)

Fig. 8. DCPA Algorithm

constraints in C3 are added to the closure in line 7. For the contour creation case
in lines 8 to 14, constraints in C4 = C2 ∪ {Θ(τ) <: τ ′} are added to the closure.
Since a constraint is never removed from the closure after the constraint is added,
we have C1 ⊆ C2 in line 11. Thus, C3 ⊆ C4, and DCPA follows the framework
when applying the (∀-Elim) rule. Finally, notice that every constraint added to the
closure is generated by following a closure rule in the framework. 2

We now complete the DCPA algorithm definition by adding unification. The
DCPA algorithm unifies two object types when they are from the same class and
they are lower bounds of the same type variable. The unification algorithm is
defined as follows.

Definition 6.5 (Unification of Object Types). The unifier of the two ob-
ject types of the same class δ, U(obj(δ, [ li : τi ]),obj(δ, [ li : τ ′

i ])), is a composition
of substitutions bτ ′

i/τic for each i s.t. τi is an imperative type variable.

We give a complete DCPA definition with unification in Figure 8. In Figure 8,
lines 1 to 4 describe the unification application. The condition in line 1 means
that the current constraint set C0 is subject to a unification application, and the
condition in line 3 means that the unification has not been applied to C0 yet.
When the two conditions are satisfied, the algorithm applies the unification to the
current closure state in line 4. The remaining part of the algorithm presentation
(lines 5 to 20) simply follows the algorithm in Figure 7 with the effect of unification
incorporated.

Now the type inference with DCPA Algorithm can be defined as follows:

Definition 6.6 (DCPA Algorithm). For a program e with initial constraint
set C, if DCPA(C, {}, {}) returns (C′, Ω), then C′ is a DCPA closure for e.
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We now discuss the soundness of DCPA. Given a program, if applying the DCPA
algorithm without unification results in closure C1, and applying the DCPA al-
gorithm with unification results in closure C2, then C2 can be obtained from C1

by unifying some type variables in C1 and adding more constraints accordingly.
Thus, if there are no type-contradictory constraints in C2, then there are no type-
contradictory constraints in C1 as well. So, if the DCPA algorithm without uni-
fication is sound, then the DCPA algorithm with unification is sound as well. By
Lemma 6.4, the DCPA algorithm without unification is an instantiation of the
framework in Section 5. Thus the soundness of the DCPA algorithm follows from
the soundness of the framework.

In the presence of nested type schemes, CPA may not terminate for some pro-
grams. In [Smith and Wang 2000] we have formalized a provably terminating CPA
algorithm. The basic idea is to share more contours to prevent a flow-dependency
relation in the program that may cause the generation of an infinite number of
contours. To avoid the cost of instantiating nested type schemes, no nested type
scheme is generated in our system. Thus, in our system, CPA would always termi-
nate without any special mechanism to enforce termination.

We now discuss the termination issue of the DCPA algorithm. Without the
recursion detection mechanism, the DCPA may not terminate for some recursive
programs. For example, consider a simple Java program:

class C {

Object x;

static void f(C y) { f(new C());}

public static void main(String args[]) { f(new C()); }

}

Applying the DCPA without recursion detection incurs infinite loop: every contour
generated for method f causes a new object type generated for class C, which in
turns causes a new contour generated for f. With recursion detection, the DCPA
generates only one contour for f. Since two object types are always unified whenever
they flow together, the possible number of argument types for any ∀-elimination
is finite. With an induction on the length of the shortest call-path from the main
function to any method invocation or object creation, it can be proved that the
number of ∀-eliminations in the DCPA closure computation for any method in-
vocation or object creation is finite. Thus, the DCPA algorithm terminates for
arbitrary programs.

7. IMPLEMENTATION

In this section, we discuss our implementation of constraint-based type inference for
Java. The algorithms we have implemented include 0CFA, CPA and DCPA. The
system is itself written in Java. It takes Java source code as input and statically
checks the validity of all downcasts in the program. For each Java downcast of the
form (T)e, casting expression e to Java class or interface T, the system computes
a set of Java classes which are conservative approximations of the classes for the
object values which e can take on at run-time. If the algorithm discovers that e

might evaluate to an object of class C, and C is not a Java subtype of T, then the
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downcast is reported as unsafe; otherwise the cast is safe. If a downcast is judged
as safe by the system, it is guaranteed to succeed at run-time.

Though our system is built as a downcast checker, it is essentially a concrete
class analysis tool for Java. So, it could also be used as an analysis tool for static
resolution of virtual method calls and other compiler optimizations.

The system currently can handle all standard Java language features, including
objects, classes, interfaces, inner classes, and exceptions. The only feature the
system cannot handle automatically is the reflection mechanism of Java.

7.1 Java Language Features

In Section 5, we have discussed how type inference can be performed on the key
features of object-oriented languages. In this section, we will discuss in more detail
how the analysis of various Java language features is implemented in our type
inference system for Java.

We first discuss the concrete implementation of object types. Recall that an ob-
ject type is of the form obj(δ, [ li : τi ]), where δ is the identifier of the corresponding
class, and the notation [ li : τi ] enumerates the type for every instance field and in-
stance method of the object. A naive implementation would store in every object
type all type schemes for the instance methods. This is inefficient since different
object types of the same class have the same set of type schemes for the instance
methods of the class. In our system, the class identifier δ for every class is repre-
sented as a class object, which has the following components: a reference to the
class object for the parent class, a method-lookup-table containing type schemes for
all instance methods of this class, type schemes for constructors and static methods,
and the class’ creation-type-scheme. The method-lookup-table is an analysis-time
analogy of the virtual-method-table used by object-oriented languages to perform
dynamic method dispatch at run-time. In our system, every method-lookup-table
is represented as an array of type schemes, and every instance method is identified
by an integer that serves as an index to the array. Thus fetching a type scheme for
an instance method during closure computation is efficiently implemented. Besides
the class identifier δ, every object type also contains an array of types, and every
instance field of the class is identified by an integer which servers as an index to the
array. Thus fetching the type for an instance field during closure computation is
also efficiently implemented. Due to the nature of inheritance in Java, the integer
identifier for an instance method or an instance field needs not to be changed upon
inheritance.

Object creations are analyzed as follows. As we have discussed before, an ex-
pression new C() is analyzed with constraints τ1 <: t → [[new C()]], and null <: t,
where τ1 is the creation-type-scheme of class C. When the object creation invokes a
constructor, constraints for invoking the constructor are also generated. Each con-
structor is analyzed as if it is a static method with an extra argument for “this”,
thus the type scheme for every constructor is also independent of the meaning of
“this”. This is important since a constructor of a parent class can also be called by
a constructor of a subclass with “this” refer to an instance of the subclass.

Java interface features are analyzed as follows. Just like every Java class, every
Java interface corresponds to an interface identifier, which is implemented as an
interface object. An interface object contains references to the interface objects for
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all the parent interfaces which this interface extends. For each abstract method
of a Java interface, a hashtable is built, which associates every concrete class im-
plementing this interface with the instance method of the class, corresponding to
the abstract method. Such hashtables are used during closure computation to effi-
ciently determine the type scheme of the target method for a virtual method call
through an interface.

Arrays are special objects in Java. Thus, array objects are analyzed as special
object types with a single field representing the array contents. Array store ex-
pressions in Java require a run-time check to ensure the type safety. Thus those
expressions are analyzed in a similar way as downcast expressions. And, the system
also statically checks the type safety of every array store expression.

Inner classes are analyzed as follows. In Java, from an instance of the inner class,
an instance of every enclosing class is accessible. Thus, for every enclosing class,
an additional field is added to the object types of the inner class, representing the
enclosing instance. Similarly, the creating-type-scheme of an inner class contains an
extra “this” argument for every enclosing class. An inner class may also access local
variables in the surrounding lexical context. For every local variable accessed, we
add a special field in the inner class for it, and thus convert the variable access to a
field access. In this way, all type schemes generated (for methods, constructors and
object creations) in our system enjoy the following property: bound type variables
of one type scheme never appear in the scope of another type scheme. Namely, no
nested type schemes are generated. Thus, during the closure computation, when
instantiating a type scheme by renaming all types and constraints in its scope, no
type scheme needs to be renamed.

Java exception-handling features are analyzed in a simple manner. Each ex-
ception class (i.e., subclass of java.lang.Throwable) is represented by a unique
type variable. If exception class A is a subclass of exception class B, constraint
t1 <: t2 is generated, where t1 and t2 are type variables for classes A and B re-
spectively. A statement throw e produces a special constraint [[e]] <: exception,
where exception is a special type such that for any object type τ becoming a lower
bound of exception, if τ corresponds to an exception class, a constraint τ <: t
is generated with t as the type variable corresponding to the exception class of τ .
A statement of form try {...} catch(T e) {...} produces constraint t <: [[e]],
where t is the type variable for the exception class T. With this approach, exception
objects are not analyzed as accurately as other objects. But, exception objects are
usually used very simply, and from the benchmark programs studied we have not
seen a need for a more complex handling of exception types.

Since our type inference is a whole program analysis, reachable library code from
the program must also be included in program analysis. We use the Sun JDK library
source code. Native library methods were manually replaced with type-compatible
Java code. For example, the clone method in Object is analyzed as: static

Object clone(Object x) { return x;}. When analyzing a Java program, the
system loads the reachable Java source code lazily.

The reflection features of Java pose a significant difficulty to any static analysis.
For example, it is impossible for a static analysis to determine precisely which class
is dynamically loaded by an expression Class.forName(x). Our ad hoc solution for
analyzing code with reflection is to manually replace code using reflection with type-
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compatible code without reflection. For example, Class.forName(x).newInstance()
can be replaced with an expression true ? (Object)new A() : (Object)new

B() if it is certain that either class A or class B is loaded. Such a replacement is
always possible, since we require that the source code for all reachable classes is
available and there are only finitely many classes.

7.2 Constraint Representation

Constraint representation is important for the efficiency and scalability of the anal-
ysis. In our system, constraints are represented in a form derived from the con-

straint map representation defined by Trifonov and Smith [1996]. Our constraint
representation applies a well-known idea that a closed constraint set may contain
much redundant information. For example, after applying the (Read) closure rule
on constraint obj(δ, [ l : u, . . . ]) <: [ l : read τ ], the constraint u <: τ is generated,
and the original constraint obj(δ, [ l : u, . . . ]) <: [ l : read τ ] can be removed since
it contains no more useful information than the constraint u <: τ .

In general, a constraint τ1 <: τ2 (τ1 /∈ TypeVar and τ2 /∈ TypeVar) is removed
once the applicable closure rules have been applied on it. The only exception is
application constraints of the form (∀ t . (t1 × . . . × tn) → τ \ C) <: (t′1 × . . . ×
t′n) → τ ′. Even if the (∀-Elim) closure rule has been applied on the application
constraint, there could be constraints of form τvi <: t′i appearing later in the closure
computation and those constraints would cause the (∀-Elim) rule to be applied on
the application constraint again. Thus the application constraint is still needed as
long as type variables t′i are needed, and we store the application constraint as a
reachable component of type variables t′i. Besides the application constraints and
constraints of form τ1 <: τ2 (τ1 /∈ TypeVar and τ2 /∈ TypeVar), there are only
two forms of constraints: τ1 <: t and t <: τ2. Thus, during the closure computation,
it suffices to only store application constraints and constraints of form: τ1 <: t and
t <: τ2, All other constraints are not needed for future closure computation and
there is no need to store them.

Based on the above ideas, our system represents the constraint closure set via a
set of type variables. Type variables themselves are implemented as follows:

class TypeVar extends Type {

HashMap lb;

HashMap ub;

ReachableApplication ra;

...

}

The above code fragment shows the key components of the representation of a type
variable: the field lb is the set (implemented with a hashtable) of value type lower-
bounds of the type variable; the field ub is the set (implemented with a hashtable)
of type upper-bounds of the type variable; and the field ra is a linked list of all
reachable application constraints using this type variable as a formal argument.

Such a constraint representation enables a simple form of automatic garbage
collection over unreachable constraints: many constraints which are not needed for
future closure computation become unreachable in the constraint representation,
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and such constraints will be garbage-collected automatically by the Java run-time
garbage collector.

The system also incorporates other optimizations on constraint representation
and closure computation: the closure rule (Trans) only propagates value type lower
bounds in the forward direction and transitivity is only through type variables; for
any constraint of form t1 <: t2, we only store the constraint once by storing t2 in
the upper-bound set ub of t1, and t1 is not stored in the lower-bound set lb of t2.
Those optimizations reduce the memory consumption of the analysis and simplify
the closure computation.

Our implementation of constraints is not as sophisticated as existing optimization
techniques for constraint systems [Eifrig et al. 1995a; Pottier 1996; Pottier 1998;
Flanagan and Felleisen 1997; Flanagan 1997; Fähndrich 1999; Su et al. 2000]. Those
techniques can be applied to our system to further improve the performance.

7.3 Optimizations

We now discuss other optimizations implemented in our system to improve the
system performance and ensure the feasibility of the system for analyzing realistic
Java applications.

7.3.1 Optimization with Monomorphic Types. Monomorphic types include Java
primitive types (e.g., int, boolean) and object types of monomorphic classes.
Monomorphic classes (e.g., String, Integer) are those classes that do not have
subclasses and only have fields capable of storing values of monomorphic types.
If, according to the Java static type declaration, a variable or expression is of a
monomorphic type, we use the monomorphic type directly as the type for such a
variable or expression without any type inference effort. Since we do not generate a
type variable as type for such a variable or expression, there is no type propagation
and other closure computation effort for analyzing the variable or expression.

7.3.2 Additional Contour Sharing. There are several additional strategies in-
corporated in the system for sharing more contours than the CPA and DCPA
algorithms we have defined so far.

One issue is to prevent the algorithm from creating too many contours on certain
pathological cases. Agesen [1996] defines the notion of megamorphism, which means
that too many different value types flow to a single call site as arguments. Consider
an example studied by Agesen [1996]. If a program contains a message invocation
with a receiver and 18 formal arguments, and there are three value types flow to both
the receiver and formal argument positions, then CPA would generate 319 ≈ 109

contours for this method. This is infeasible. To prevent CPA from blowing up,
the number of contours generated for a megamorphic call site is reduced as follows.
For any call site, the system counts the number of different value types reaching an
argument position of a method invocation; if the number exceeds a pre-determined
threshold (a small number in the range of 2 to 4), then the call site is considered
megamorphic and the number of contours generated for this call site is reduced.
This idea is also employed in our system.

For some programs, DCPA may also blow up when too many contours are judged
as CPA-unsafe. The Java program in Figure 9 is an example. At run-time the
program will generate 210−1 ≈ 103 instances of class Pair. When DCPA is applied
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class Pair {

Object a, b;

Pair(Object obj1, Object obj2) {

a=obj1; b=obj2;

}

public static void main(String args[]) {

Object o=f1();

}

static Object f1() {

return new Pair(f2(), f2());

}

static Object f2() {

return new Pair(f3(), f3());

}

...

static Object f10() {

return new Pair(new java.util.Vector(), new java.util.Vector());

}

}

Fig. 9. Java Program with Exponential Behavior

to this program, each method of f1, f2, ..., f10 creates a pair and returns it,
thus every contour of those methods are CPA-unsafe. This means that there will
be about 103 creation points, and about 103 distinct object types generated for
class Pair. Furthermore, it is rare for a program to have 103 different kinds of
type behaviors for objects from the same class. Thus, generating such a huge
number of contours is unnecessary. To prevent DCPA from generating too many
contours in this case, the system always regards a contour as CPA-safe (reusable)
when too many object types are created locally by the contour. With such a
mechanism, the contour for method f2 would be judged as CPA-safe and shared
by the two invocations of f2, and so is the contour for method f3, f4, .... Thus
the exponential behavior of DCPA on this program is avoided.

The system has incorporated another optimization when generating CPA and
DCPA contours: If an argument is never used in the method body, the argument
is ignored when CPA and DCPA make contour selections.

7.3.3 Online Cycle Elimination. Another optimization incorporated in our sys-
tem is the partial online cycle elimination [Fähndrich et al. 1998]. The basic idea is
to detect cycles of the form t1 <: t2 . . . <: tn <: t1, and collapse all type variables on
such cycles into a single variable. We have implemented the cycle elimination mech-
anism using a novel approach. Instead of performing cycle detection as a separate
operation at every update of the constraint system, as in [Fähndrich et al. 1998],
we piggyback the cycle detection operation on the process of propagating value
types along flow paths. Whenever the (Trans) closure rule is applied on constraint
τv <: t, τv also needs to be propagated to type variables that are upper bounds
of t. Our system performs cycle detection on t while propagating τv forward. It
keeps track of type variables visited on the current flow path so an already-visited
variable will be discovered. In this way, the overhead of cycle detection is reduced.
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7.4 Flow Sensitivity

A constraint-based type inference is a flow-insensitive analysis. It ignores the order
of statements and expressions in the program and computes type information that
is valid for the whole program rather than particular program points. This reduces
the complexity of the analysis. Yet a more precise analysis could be obtained if the
analysis takes the order of statements and expressions into account.

We have incorporated a limited form of flow-sensitivity into our system for accu-
rately analyzing a common Java programming idiom:

if (x instanceof C) { C a = (C) x; ... }

In the above program fragment, at the entry point of the true branch, it is certain
that values of variable x are instances of class C. Thus the downcast (C)x always
succeeds at run-time. Our system uses a simple algorithm to analyze the condition
expression of every if statement specially. It conservatively estimates whether
conditions of form x instanceof C would definitely hold or definitely not hold at
the entry point of every true or false branch of an if statement, and if so the
system would use that fact in the analysis of the true or false branch to achieve a
better analysis result. This special processing is integrated into the type inference
pass, and it is uniformly applied in our implementations of 0CFA, CPA and DCPA
algorithms.

8. EVALUATION

In this section, we present the experiment results of our type inference system on
several benchmark programs. The goal of the experiment is to test the feasibility
of the system for analyzing realistic Java applications, and to compare the DCPA
algorithm with algorithms 0CFA and CPA in terms of precision and efficiency.

8.1 Benchmark Programs

We have used several realistic Java applications in our experiment. Information
about the benchmark programs is presented in Table I. The following benchmark
programs have been used: jlex 2 is a lexical analyzer generator; toba3 is a Java-to-C
code translator; javacup4 is a Java parser generator; jtar5 is an archive utility;
bloat6 is a Java bytecode optimizer; self is our system itself used as a benchmark;
sablecc7 is a compiler generator; javac and javadoc are standard tools in Sun’s Java
SDK.

In Table I, the column “lines” shows the number of lines of source code in the
benchmark program only. The numbers for javac and javadoc are not available
since there is some code reachable from both the two applications and the Java
standard library implementations, and so it is difficult to have an accurate division
between user code and libraray code. Since our system is a whole-program analysis,

2see http://www.cs.princeton.edu/˜appel/modern/java/JLex/
3see http://www.cs.arizona.edu/sumatra/toba/
4see http://www.cs.princeton.edu/˜appel/modern/java/CUP/
5see http://www.angelfire.com/on/vkjava/
6see http://www.cs.purdue.edu/homes/hosking/bloat/
7see http://www.sable.mcgill.ca/sablecc/
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Program lines methods casts

jlex 7835 398 65
toba 6417 777 63
javacup 10592 532 459
jtar 11904 1446 10
bloat 18841 1053 205
self 23122 1304 130
javadoc − 2314 310
sablecc 23111 2811 519
javac − 2933 606

Table I. Benchmark Programs

0CFA CPA DCPA
Program safe time safe time Θ safe time Θ

jlex 10.8% 3.3 16.9% 3.5 1.5 100% 3.8 2.3
toba 4.8% 4.8 4.8% 5.1 1.6 22.2% 6.4 2.7

javacup 8.1% 3.6 8.1% 3.9 1.4 89.3% 4.5 3.6
jtar 0% 6.7 0% 7.1 1.5 100% 11.0 2.4

bloat 7.8% 5.3 8.8% 5.9 1.5 30.2% 7.1 4.3
self 36.9% 4.5 51.5% 5.9 1.9 93.8% 10.7 3.4

javadoc 25.3% 10.1 40.8% 13.0 1.9 77.7% 23.6 4.3
sablecc 34.5% 10.9 35.2% 10.9 2.5 61.7% 21.3 4.1

javac 17.1% 12.5 30.5% 30.0 2.5 50.1% 74.8 7.1

Table II. Experiment Results

every benchmark program is analyzed along with the reachable library code. The
column “methods” shows the number of reachable methods in the whole program
including libraries. The number of reachable methods is the one detected by the
DCPA algorithm.

The column “casts” shows the number of downcasts in the benchmark program
only. Downcasts reachable in the library code are also checked, but checking down-
casts in user code is the goal of the system and only those casts are reported.

8.2 Experimental Results

All programs are tested with three algorithms: 0CFA, CPA and DCPA. Table II
presents the experimental results.

The columns labeled “safe” indicate the percentage of total user downcasts which
have been statically verified. The columns labeled “time” report system execution
time in seconds, including time for parsing, type inference and closure computation.
For CPA and DCPA, columns labeled “Θ” report the average number of contours
generated for each type scheme; this is always 1 for 0CFA.

The benchmark results were obtained using the Sun JDK 1.3 on a PC with
866MHZ Pentium processor and 512M of memory. All benchmarks except javac

were analyzed with 80M maximum heap size. javac has a very complex inheritance
hierarchy, and its analysis is significantly more complex than the other benchmarks.
The results for javac with 0CFA, CPA, DCPA were obtained with 80M, 96M and
160M maximum heap size, respectively.

As can be seen in the benchmarks, DCPA can verify significantly more downcasts
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than either CPA or 0CFA. For example, all downcasts in user code of jlex and jtar

have been statically verified. This shows that CPA and 0CFA are not precise
enough for downcast checking, and in general, DCPA is a much more precise type
inference algorithm for object-oriented languages. We have manually studied the

import java.io.*;

class Dynamic {

int kind;

Object value;

Dynamic(int k, Object v) { kind=k; value=v;}

public static void main(String args[]) throws Exception {

FileOutputStream out = new FileOutputStream("Hopkins");

ObjectOutputStream s1 = new ObjectOutputStream(out);

s1.writeObject("Type Inference");

s1.writeObject(new Boolean(true));

s1.flush(); out.close();

FileInputStream in = new FileInputStream("Hopkins");

ObjectInputStream s2 = new ObjectInputStream(in);

String str = (String)s2.readObject(); in.close();

p(new Dynamic(1, new Integer(0)));

p(new Dynamic(2, new Boolean(true)));

}

static void p(Dynamic d) {

switch(d.kind) {

case 1: Integer i=(Integer)d.value; break;

case 2: Boolean b=(Boolean)d.value; break;

}

}

}

Fig. 10. Java program with dynamic down-casts

downcasts that cannot be verified by DCPA for some benchmark programs. Nearly
all of them cannot be verified even with an analysis that would generate a fresh
contour for every function application. Some of the remaining downcasts could be
verified by a flow-sensitive analysis, but most are fundamentally “dynamic”, with
safety that depends on the state of execution, and thus not verifiable by any static
analysis of this variety. For example, DCPA can only verify 22.2% of the downcasts
in toba, but a manual inspection shows that nearly all of the remaining downcasts
are fundamentally dynamic.

The program in Figure 10 shows typical examples of the fundamentally dynamic
downcasts appearing in Java programs. The first case is related to input/output op-
erations. In the program, though it is the programmer’s intention that the first ob-
ject read from the file named Hopkins is a String object, it is usually impossible for
a static analysis to discover that. Thus the downcast (String)s2.readObject()
is fundamentally dynamic. Another case is about a common programming idiom:
there is a class with a polymorphic field which can store values of different types,
and the class has another integer-valued field which records the type of the value
stored in the polymorphic field. The class Dynamic is such a class: the field value
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import java.util.*;

class Flow {

public static void main(String args[]) {

Hashtable ht1=new Hashtable();

Hashtable ht2=new Hashtable();

ht1.put("zero", new Integer(0));

ht2.put("true", new Boolean(true));

Enumeration e;

for (e=ht1.elements(); e.hasMoreElements();) {

Integer i=(Integer)e.nextElement();

}

for (e=ht2.elements(); e.hasMoreElements();) {

Boolean b=(Boolean)e.nextElement();

}

}

}

Fig. 11. Java program for flow-sensitivity

stores an Integer object if and only if the value of field kind equals to 1. In the
example, since it is usually impossible for a static analysis to statically determine
the exact value of expression d.kind, the two downcasts (Integer)d.value and
(Boolean)d.value are fundamentally dynamic. Type annotations may be used to
guide the analysis of those dynamic cases.

Another reason that some downcasts cannot be statically verified is because our
analysis is flow-insensitive. Consider the program in Figure 11. The variable e is
used as an iterator over the values of the hashtable ht1 and hashtable ht2 at the dif-
ferent points of the program. Since our analysis is flow-insensitive, it cannot deter-
mine that, when the control flow reaches the downcast (Integer)e.nextElement(),
the variable e stores only the iterator for ht1; and, when the control flow reaches
the downcast (Boolean)e.nextElement(), the variable e stores only the iterator
for ht2. Thus, the two downcasts cannot be verified by our system.

As we have discussed, some special form of flow-sensitivity is incorporated into
our system for accurately analyzing a common Java programming idiom:

if (x instanceof C) { C a = (C) x; ... }

But, sometimes the simple algorithm for adding such a special form of flow-sensitivity
is not powerful enough. For example, consider following java program fragment:

if (! x instanceof C) return false;

C a = (C) x; ...

The downcast always succeeds at run-time, yet our system fails to verify it.
One possible approach for adding flow-sensitivity to a constraint-based type infer-

ence is to use the Static Single Assignment (SSA) transformation [Cytron et al. 1991;
McConnell and Johnson 1992]. SSA transformation puts the program into a form
where every variable is assigned at only one program point. With the program
transformed into a SSA form, some flow-insensitivity is incorporated to the constraint-
based type inference and the downcasts in Figure 11 could be verified.
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In summary, DCPA appears to produce nearly optimal results as a flow-insensitive
static analysis for downcast checking on the benchmark programs we have tested.
There are downcasts in the benchmark programs which DCPA fails to verify, but
nearly all of them cannot even be verified by an analysis which would use a fresh
contour for every function application. DCPA is also implemented efficiently: it
successfully analyzes all of the benchmark programs that are all realistic Java ap-
plications; comparing the time and the average number of contours of CPA and
DCPA, we can see that the efficiency of DCPA is comparable to CPA.

9. RELATED WORK

There have been several frameworks developed for polyvariant flow analyses, in
terms of union and intersection types [Palsberg and Pavlopoulou 1998], abstract in-
terpretation [Nielson and Nielson 1997], flow graphs [Jagannathan and Weeks 1995],
and more implementation-centric [Grove et al. 1997]. In particular, Palsberg and
Pavlopoulou [1998] develop an elegant framework for polyvariant flow analyses in
a type system with union/intersection types and subtyping.

Let-polymorphism is the classic form of polymorphism used in subtype-free type
inference, and it has been adapted to constrained types in [Aiken and Wimmers 1993;
Eifrig et al. 1995b], as well as directly in the flow analysis setting by Wright and Ja-
gannathan [1998]. Another representation of polymorphism found in subtype-free
languages is via rank-2 intersection types [Jim 1996], which has also been applied
to polyvariant flow analysis [Bannerjee 1997]. The Church group has developed
type systems of union and intersection types decorated with flow labels to indicate
the flow information [Wells et al. 1997].

The framework presented in this paper is the first proposal to use polymorphic
constrained type schemes to model polyvariant flow analyses. There are two reason-
able approaches to model polyvariant analyses with constraint-based type systems:
a monomorphic constrained type theory may be extended with union and intersec-
tion types, or universally quantified constrained type schemes may be used. We
take the latter approach due to its closeness to the existing implementations of
polyvariant analyses: re-analysis of a function definition is closely analogous to a
new instantiation of a type scheme. There also are implementation advantages ob-
tained by basing analyses on polymorphic constrained types. Compared to the flow
graph based approach used in other implementations of flow analyses [Agesen 1996;
Grove et al. 1997; Plevyak and Chien 1994], our framework has several advantages:
re-analysis of a function in a different polyvariant context is also realized by in-
stantiation of the function’s constrained type scheme, and does not require re-
analysis of the function body; existing optimization techniques for constraint sys-
tems [Eifrig et al. 1995a; Pottier 1996; Pottier 1998; Flanagan and Felleisen 1997;
Flanagan 1997; Fähndrich 1999; Su et al. 2000] can be applied, leading to more ef-
ficient implementation of the analyses. For above reasons, previous frameworks for
polyvariant flow analyses are not suitable for our purpose; and we develop a new
framework to model CFA, CPA and the new DCPA algorithm.

Type systems with constraints have been extensively studied [Mitchell 1984;
Reynolds 1985; Fuh and Mishra 1988; Kozen et al. 1992]. Aiken and Wimmers
[1993] develop a type system with type inclusion constraints and type inference.
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Heintze constructs a set-based analysis of ML programs [Heintze 1994]. Pottier
[1996; 1998] develops a type inference framework with subtyping constraints.

Aiken et al. [1998] develop a toolkit for constraint-based program analysis. They
develop various effective techniques for optimizing the implementation of constraint
systems, including partial online cycle elimination [Fähndrich et al. 1998] and pro-
jection merging [Su et al. 2000].

Flanagan and Felleisen [1997;1997] develop a componential set-based analysis.
The analysis is used in MrSpidey [Flanagan et al. 1996], a static debugger for
Scheme programs. Componential set-based analysis uses two effective techniques: a
constraint simplification algorithm that can effectively reduce the size of constraint
system; and a methodology that allows analyzing the whole program by combining
constraints obtained for multiple program components. Such techniques can also
be applied in our system for further improvement of analysis efficiency.

Compared to those constraint-based analyses, which are either monomorphic or
let-polymorphic, our system takes a different and flow-based approach to handle
polymorphism, and can effectively analyze data-polymorphic programs.

Mossin [Mossin 1997] develops a flow analysis with a polymorphic constraint
system for typed programs. Similar to our system, instantiating constrained type
schemes is realized by constraint copying. Rehof and Fähndrich [2001] develop a
type-based flow analysis with polymorphic subtyping. Using instantiation con-
straints, the analysis computes context-sensitive flow information by applying context-
free language reachability techniques, and it obviates the need of constraint copying.
In comparison, our system uses constraint-copying method and focuses on reducing
the number of instantiations (contours) generated for type schemes.

Type inference for object-oriented programming has been extensively studied
[Suzuki 1981; Borning and Ingalls 1982; Johnson 1986; Graver and Johnson 1990;
Vitek et al. 1992]. Palsberg, Schwartzbach and Oxhøj [1991;1992;1994] have pio-
neered the use of constraint-based approach for analyzing object-oriented languages.

Agesen [1996] develops the CPA algorithm and has implemented it as a type
inference system for object-oriented language Self. The type inference system is
also used for constructing an application extractor that extracts the reachable code
of a Self application from the Self programming environment. The development of
our polymorphic type inference framework and the Data-Polymorphic CPA (DCPA)
algorithm is inspired by Agesen’s work on CPA algorithm. Our DCPA algorithm
extends CPA with the ability to effectively analyze data-polymorphic programs.

Plevyak and Chien’s iterative flow analysis (IFA) [1994; 1996] is a precise constraint-
based analysis of object-oriented programs. Like our DCPA algorithm, IFA aims
to achieve precise type inference result in the presence of parametric polymorphism
and data polymorphism. To our knowledge, IFA is the only existing system in the
literature capable of analyzing data-polymorphic programs precisely. IFA analyzes
programs with an iterative approach. Each iteration pass is a whole program anal-
ysis, which refines the analysis result obtained from the last pass. The iteration
continues until no more refinement can be achieved. Compared to IFA, the DCPA
algorithm detects data polymorphism online, and does not need generational it-
eration. Another advantage of the DCPA algorithm is that it is significantly less
complex than IFA.

Grove et al. [1997; 1998] have implemented a framework for analyzing object-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Polymorphic Constraint-Based Type Inference for Objects · 43

oriented languages, and have implemented a family of analyses, including nCFA and
CPA. The analyses have been used for call-graph construction and interprocedural
optimizations. They report that substantial speed-ups have been achieved with the
interprocedural analyses and optimizations.

Duggan [1999] has proposed a system to automatically detect polymorphic Java
classes. It is currently not implemented or tested with benchmarks and so its feasi-
bility and performance are unclear. Recently Donovan et al. [2004] have developed
a system for automatically converting Java programs to use generic libraries. The
system is based on a constraint-based analysis using our polymorphic constraint
framework presented in this paper.

Rountev et al. [2001] develop a points-to analysis for Java using annotated con-
straints. Whaley and Lam [2002] develop an inclusion-based points-to analysis for
Java. Those systems have achieved good efficiency and scalability on large sets of
Java programs. While those systems handle the polymorphism in the similar way
as the 1CFA algorithm, our system achieves type inference precision beyond 1CFA
and CPA.

O’Callahan [2001] has built a system for the analysis of Java bytecode. The
system is used for static verification of Java downcasts. His type schemes are much
more compact yet less precise than the constraint-based type schemes used in our
system. While our system aims to reuse contours across different call sites and
only produces a few contours on average for each type scheme, his system is fully
context-sensitive and always instantiates a type scheme differently in every different
context.

As with the CPA and IFA algorithms, the DCPA algorithm aims to improve
the analysis precision as much as possible in the presence of polymorphism. There
is another family of analyses for object-oriented languages, which aim to be as
efficient as possible. Such algorithms emphasize the efficiency of the analysis over
the analysis precision.

Dean et al. [1995] develop the Class Hierarchy Analysis, which is a simple and
fast analysis based on the class hierarchy of the program. Bacon and Sweeney
[1996; 1997] develop Rapid Type Analysis, which is a refinement of the Class Hi-
erarchy Analysis. The analysis has been used for supporting various compiler
optimizations of C++ programs, including static resolution of virtual function
calls. Diwan et al. [1996; 1996; 1998] develop several simple and effective anal-
yses for statically-typed object-oriented languages. The analyses have been used
by a whole-program optimizer for Modula-3 programs. Tip and Palsberg [2000]
develop a spectrum of constraint-based analyses for Java. Those analyses are less
precise yet more efficient than 0CFA. The analyses are used for call-graph construc-
tion. Sundaresan et al. [2000] develop several analyses for Java. Those analyses are
also less precise yet more efficient than 0CFA. The analyses are used for resolving
virtual method calls in Java programs.

Those fast analyses are useful because for many purposes it has become clear
that a more precise analysis is not needed. But, this paper shows that there still
are purposes, including cast checking, where it is critical to have a very fine-grained
analysis.
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10. CONCLUSION

This paper presents following results:

—A generic framework for polymorphic constraint-based type inference is devel-
oped, and the soundness of the framework is proved. The framework can be used
for developing new type inference algorithms and for establishing the soundness
of constraint-based program analyses. The framework is also extended with the
ability to analyze object-oriented languages.

—We define Shivers’ nCFA and Agesen’s CPA as instantiations of the framework,
and hence establish the soundness of those algorithms.

—We develop a novel algorithm, Data-Polymorphic DCPA, which extends the CPA
with the ability of analyzing data-polymorphic programs effectively. Experiments
show that DCPA is significantly more precise than 0CFA and CPA in terms of
downcast verification, and the efficiency of DCPA is comparable to CPA.

—We implement a constraint-based type inference system for Java. The system
includes implementations of algorithms 0CFA, CPA and DCPA, and it uses a
series of novel implementation optimizations that are essential to the performance
of the system. The system is essentially a concrete class analysis tool, and it can
be used for various important applications. A simple demonstration of our system
is available at: http://www.cs.jhu.edu/~wtj/precise.
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