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Abstract

We de�ne a powerful type inference mechanism with application to object�oriented

programming� The types inferred are recursively constrained types� types that come

with a system of constraints� These types may be viewed as generalizations of recur�

sive types and F�bounded polymorphic types� the forms of type that are necessary

to properly encode object typings� The base language we study� I�Soop� incorpo�

rates state and records� the two features critical to encode objects in a non�object�

oriented language� Soundness and completeness of the type inference algorithm are

established by operational means� Our method for establishing these properties is

somewhat novel� We illustrate how the algorithm may be fruitfully applied to infer

types of object�oriented programs�

� Introduction

This paper addresses the problem of designing an object�oriented program�

ming language with an e�ective type inference mechanism� Recently devel�

oped programming languages including Standard ML and Haskell incorporate

type inference as a core component of the language� However� type infer�

ence has yet to achieve practical application to object�oriented programming

languages�

We strongly feel the core type features necessary to model object�oriented

programming with type inference include a notion of subtyping ���� and a no�

tion of �recursively constrained polymorphism�� a generalization of F�bounded

polymorphism �	�
��

Recursively constrained types � are types of the form � n C� with � n �
reading �where�� C is a set of type constraints of the form �� � ��� possibly

containing free type variables� These constraints may be recursive in that a
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variable t could occur free in both �� and ��� The recursive constraint set

ft � Nat � t� t � t � Natg expresses t � t� Nat� so recursively constrained

types subsume recursive types� We will use rc type to abbreviate recursively

constrained type�

Polymorphic rc types are types �t�� � � � � tn� � n C where constraints �� � ��

in C may contain type variables t�� � � � tn free� Polymorphic rc types generalize

the more well�known bounded types ��� �t � �� � �
in several ways� First�

they are recursive� so t could occur free in � � this is not allowed in bounded

types� Types with t occurring free in � are the so�called F�bounded types

�
�� Polymorphic rc types generalize F�bounded types by allowing more than

one upper bound on a type variable� as well as allowing multiple lower�bound

constraints � � t� This generalized form of polymorphic type is very useful

in typing object�oriented programs that are otherwise untypable� irrespective

of the question of type inference� An example of such a program is given in

Section 
 below�

It is not di�cult to see how rc polymorphism is useful in typing classes

and objects� for it is at least as useful as F�bounded polymorphism� Classes

may have so�called binary methods that refer to the type of objects of their

own class� for instance an object with an equal method takes as parameter

another object of its own type� Thus� a self�type is needed� And� this self�

type needs to be open�ended since a class may be extended� we wish the type

of self to be �an object with all the methods currently de�ned� and possibly

additional ones�� Polymorphic rc types capture this notion by constraining

the polymorphic �self�type� t to include the current methods� for instance

�t� � n ft � � � � equal � t� Bool� � � �g

Binary methods have proven very di�cult to type in a general way� it has

even been suggested that they be disallowed�

One way to understand the usefulness of lower bounds � � t in rc types

are as generalizations of recursive types� It is possible to write an rc type

� � t n f�� � t � ��g where lower bound �� di�ers from upper bound ��

�it is a recursive type if �� � ���� These generalized forms are useful as

intermediate results produced during the type inference process as �partial�

forms of recursive types� During the type inference process� constraints are

accumulated on types in a �bottom�up� fashion� and so types at the leaves

of typing proofs have small constraint sets� and have fat constraint sets at

the root� The lower bound �� constrains the �output� of the type � �what

properties objects of type � must have�� if an object of type � is used �i�e��

passed to a function of type � � � � � ��� an additional upper�bound constraint

t � � �
will be placed on the type by the type inference mechanism� and

this could only be contradictory if �� � � �
� which follows by transitivity� was

contradictory� The upper bound is the dual of this� constraining the �input�

of the type �what functions of type t � � � � must do��

The presence of multiple upper�bound constraints or multiple lower�bound

constraints can be understood as a restricted form of union and intersection

type� f� � t� � � � tg would be equivalent to f� � � � � tg if there were union

�
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types � � �
� in the language� a dual relationship exists between intersections

and upper bounds� We believe general union and intersection types cause too

many problems to be worthwhile� but this implicit restricted form is quite

natural�

In this paper we develop a type inference algorithm for the I�Soop lan�

guage �Inference Semantics of OOP�� I�Soop is not an object�oriented lan�

guage� however� it has an expressive enough type system so that typed OOP

may be e�ectively encoded within I�Soop� We take a translational approach

because we �nd the factoring to help clarify ambiguities� however� there is also

merit in studying languages where objects themselves are primitive ���� and

the concepts herein should eventually be recast as primitive object typings�

I�Soop�s type system contains both subtyping and polymorphic rc types� We

infer shallow polymorphic rc types at let�expressions as in the Hindley�Milner

algorithm ����� In addition the underlying language includes records and a

notion of state� for with these features it is possible to obtain an e�ective

encoding of object�oriented programming� Records are needed so record sub�

typing can be used to model object subtyping ���� Without state� the critical

state�holding property of objects is lost �����

Our approach to establishing the soundness of constrained type inference

di�ers from other work in the literature� In other approaches �e�g� �������

��
������ a method is given that either produces a satisfying assignment to the

constraints and thus establishes their consistency� or establishes that no such

solution exists and the constraints are thus inconsistent� In our approach� an

rc type�s constraint system is considered �consistent� if it does not contain

any �obvious� contradictions such as Nat � Bool� We show this view is sound�

without ever showing the �consistent� constraint systems have solutions� In�

stead we directly establish a subject�reduction property over a proof of typing

with �consistent� rc types at each node ��
����� We believe the standard

method of �nding solutions to the constraint sets can be overly restrictive�

for it forces one to have a rich enough type language or type model that can

express the solutions as types or sets� In our language� for instance� we expect

general union and intersection types would be required to express the solution

of constraints as types� but we do not wish to pay the penalty of having these

types in our language�

We also take a more primitive approach to establishing the completeness of

type inference� i�e� that all typable programs will successfully have some type

inferred by the type inference algorithm� We �rst de�ne a restricted set of

typing rules� the inference rules� for which typing derivations are deterministic�

Then these rules are shown equivalent in strength to the general form of rules�

without recourse to a �principal types� property�

��� Related Work

A number of type inference systems have been developed that bear on the type

inference problem for OOP� Papers of Reynolds ����� Cardelli ���� and Mitchell

���� are foundational papers in the �eld that develop the basic concepts of

�



Eifrig� Smith and Trifonov

constraints and subtyping� Many papers have been written since� we focus on

the more recent work the most relevant to ours�

Kaes ���� develops a type inference algorithm for a language containing

polymorphic and recursive types and type constraints� This work incorporates

subtyping constraints� recursive types� and polymorphism� Kaes writes so�

called constrained types � jC in close analogy to our rc types � n C� This

approach cannot solve general recursive constraints� t � � generates a non�

terminating uni�cation problem in his system if t occurs free in � � while our

approach can handle such constraints without di�culty� He does allow a

��xing� of such a constraint by replacing it with a recursive type �t�� � but at

the cost of an important loss of generality� Kaes takes the standard approach

to constraint consistency� by producing a solution to the constraints� He also

intends� to model overloading� not record subtyping �his system has no record

types�� Sekiguchi and Yonezawa ��
� take an approach similar to Kaes but

interpret � as subtyping on record types� making it more directly applicable

to object�oriented programming�

Palsberg� Schwartzbach� et� al� have written a number of papers concerning

type inference for objects �����	�����
�� The main feature of their work is they

do not take the Hindley�Milner approach to type inference� Instead� their

inference algorithm uses �ow analysis to generate a set of constraints about a

program� and then applies another algorithm to come up with a solution to

these constraints if it exists� Their work represents the current state�of�the�art

in having a practical type inference algorithm for object�oriented programming

languages� Other advantages of their approach include asymptotically e�cient

inference algorithms� and named class types� Their system however has no

polymorphism� and they take a code�expansion view of inheritance� requiring

re�type�checking with each class extension� This lack of polymorphism has

been partially addressed by Plevyak and Chien �����

Our work is closest to that of Aiken and Wimmers ���� They develop a type

system with subtyping� union and intersection types� and a form of polymor�

phic type similar to polymorphic rc types� They prove soundness using the

ideal model ��
�� As with the previously mentioned researchers� they have an

algorithm that produces a satisfying assignment to the top�level constraints to

establish consistency of a constraint set� The satisfying assignment they pro�

duce is an ideal in the ideal model� We have no union� intersection� or negation

types� These types prove problematic in their system� and they are in fact

unnecessary for type inference � if they are not used in the types of atomic

constructs� they are not generated by the inference algorithm �provided multi�

ple upper and lower bounds to the same variable are allowed� as we do�� Aiken

and Wimmers have not addressed the problem of using their system for typing

object�oriented programs� their language lacks important features necessary

for the encoding of objects� In particular their language is a functional lan�

guage without records� The ideal model cannot model languages with state�

so their approach would not extend to a language with state� Aiken has imple�

mented the type inference algorithm ���� and this implemented system has an

optimized inference algorithm and an implementation of extensible records�

�
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Var � x

Num � n ��� � j � j � j � � �

Val � v ��� x j n j �x� e j � l � v � j � l�v � j l � v

Exp � e ��� v j e e j let x � e in e j � l � e � j e�l j � l�e � j l � e

Fig� �� Syntax of the I�Soop language�

Encoding object�oriented features within a more basic language is one pos�

sible approach to how object�oriented programming should be done ����� We

could take a similar approach by programming in an object�oriented style via
the encoding of objects in I�Soop that we give in Section 
� R�emy gives a

collection of extensions to ML that allow OOP to be encoded� R�emy is the
only author amongst of those previously discussed who has a proof of sound�
ness of his system in the presence of reference cells� His encoding is missing a

notion of subtyping and thus lacks the core feature of object lifting� allowing
subclass objects to be implicitly coerced to be superclass objects� Instead� co�
ercion functions must be explicitly supplied� R�emy�s encoding is more e�cient

than the encoding we use� each object creation in our encoding entails forming
closures for each method of the object� If our language were to be used as
a primitive OOP language� some more e�cient object representations would

need to be developed� R�emy�s system also has a notion of extensible record�
which we expect will be useful for encoding delegation�style object�oriented
programming�

��� Outline

In Section � we present I�Soop and its operational semantics� Section �

presents the I�Soop type system� sketches of the proofs of subject reduction
and type inference appear in Section �� Then� to show how OOP can be faith�

fully encoded� an extended example is worked in Section 
� This example also
serves to illustrate the power of the type inference system� We draw some
�nal conclusions in Section 
�

� The I�Soop Language

We begin by de�ning the I�Soop language� which is roughly call�by�value PCF

with records� variants� reference cells� and let�expressions �see Figure ���

The �vector notation� l � v is shorthand for l� � v�� � � � � lk � vk for some
k� li � vi is shorthand for the same and indicates that i will range over the
elements of the vector� The set B � fsucc� pred� is zero� ref� �� setg � Var

contains the names of built�in primitive functions on numbers and reference

cells� Variants are dual to records� the injection l � e tags the value of e with

label l� and the match � l�e � �similar to the Standard ML fn construct� can

be applied to a tagged value to extract it� The booleans and conditional are
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derived from variants� true and false are de�ned as true � � � and false � � ��
respectively� and if e then e� else e� stands for � true���� e�� false���� e� � e�
we use ��� e to denote �x� e for some x not free in e�

A store �ranged over by s� is a �nite mapping from variables to values�
A con�guration hs� ei is a pair of a store and an expression� Computation

is de�ned via a single�step relation ��� between con�gurations� A reduction

context R is an expression with a �hole� � in it� into which one may put a
subexpression via R�e�� Reduction contexts serve to isolate the next step of
computation to be performed�it is always in the hole�

De�nition ��� A reduction context is de�ned inductively in Figure ��

R ��� � j R e j v R j let x �R in e

j � l� � v�� � � � � li�� � vi��� li �R� li�� � ei��� � � � � lk � ek � j R�l

j � l��v�� � � � � li���vi��� li�R� li���ei��� � � � � lk�ek � j l �R

Fig� �� I�Soop reduction contexts�

De�nition ��� ��� is the least relation on con�gurations satisfying the con�
ditions shown in Figure �� where

e�e��x� is the capture�free substitution of e� for x in e�
�x �� v � is the map de�ned only on x with result v�

f jjg is the functional extension of f by g�

hs� R���x� e� v�i ��� hs� R�e�v�x��i

hs� R�let x � v in e�i ��� hs� R�e�v�x��i

hs� R�succ n�i ��� hs� R�n��i �if n� � n� ��

hs� R�pred n�i ��� hs� R�n��i �if n� � n
� ��

hs� R�is zero ��i ��� hs� R�true�i

hs� R�is zero n�i ��� hs� R�false�i �if n 	� ��

hs� R�� � � � � l � v� � � � ��l�i ��� hs� R�v�i

hs� R�� � � � � l�v� � � � � �l � v���i ��� hs� R�v v
��i

hs� R�ref v�i ��� hsjj�x �� v �� R�a�i �x �
 Dom�s� �B�

hs� R��x�i ��� hs� R�s�x��i �x 
 Dom�s��

hs� R�set � cell �x� val � v ��i ��� hsjj�x �� v �� R�v�i �x 
 Dom�s��

Fig� �� The single�step computation relation�
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Here is a sample execution�

h�� ��x� succ ���x��eld��� � �eld � ref 	 �i

��� h� y �� 
 �� ��x� succ ���x��eld��� � �eld � y �i

��� h� y �� 
 �� succ ���� �eld � y ���eld��i

��� h� y �� 
 �� succ ��y�i

��� h� y �� 
 �� succ 
i

��� h� y �� 
 �� 
i

Lemma ���

�i� ��� is deterministic� if hs� ei ��� hs
�
� e

�i and hs� ei ��� hs
��
� e

��i� then there

is a uniform renaming of variables in s
� and e

� to those in s
�� and e

��

respectively�

�ii� ��� is compositional� if hs� ei ��� hs
�
� e

�i� then hs� R�e�i ��� hs
�
� R�e��i for

every reduction context R� �

� I�Soop Types

The monomorphic types of the language are

TyVar � � ��� t j u

Typ � � ��� � j Nat j ���

� j � l � � � j � l � � � j � ref

where t ranges over the applicative type variables AppTyVar
def

� ft�� t�� � � � g�
and u ranges over the imperative ones� ImpTyVar

def

� fu�� u�� � � � g� This

division of variables into two classes is similar to that of Standard ML� The

set of free type variables in a type � is FTV �� �� � is imperative if FTV �� � 

ImpTyVar�

A type constraint is a subtyping assertion between two �monomorphic�

types� written �� � ��� We will require all sets of constraints used in types

and rules to be implicitly closed under obvious laws�

De�nition ��� �Constraint System� A set of type constraints C is closed

i�

�i� If �� � �� 
 C and �� � �� 
 C� then �� � �� 
 C�

�ii� If ����
�

�
� ����

�

�

 C� then f�� � ��� �

�

�
� �

�

�
g 
 C�

�iii� If � li � �i � � � lj � �
�

j � 
 C and flig � fljg� then f�j � �
�

jg 
 C�

�iv� If � li � �i � � � lj � �
�

j � 
 C and flig 
 fljg� then f�i � �
�

ig 
 C�

�v� If �� ref � �� ref 
 C� then f�� � ��� �� � ��g 
 C�

A closed set of constraints is a constraint system�

We let C range over �implicitly closed� constraint systems� and thus will

be careful to make sure any new set of constraints we form is closed� The

�
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closed union of sets of constraints is denoted by C��C�� an operation that by

inspection can be seen to be associative�

De�nition ��� �Constraint Consistency� A constraint �� � �� is consis�

tent if

�i� �� 
 TyVar or �� 
 TyVar�

�ii� �� � �� � Nat� or �� � � �

�
ref and �� � � �

�
ref� or �� � � �

�
�� ��

�
and

�� � � �

�
�� ��

�
�for some � �

�
� � �

�
� � ��

�
� � ��

�
��

�iii� �� � � l � � �� �� � � l� � � � �� and flg � fl�g� or

�iv� �� � � l � � �� �� � � l� � � � �� and flg 
 fl�g�

Otherwise a constraint is inconsistent�

For example� Nat � t�Nat and t ref � �m �Nat � are inconsistent con�

straints� while t � t�Nat� t � u� and u � Nat are each consistent� A con�

straint system is consistent if all the constraints in the system are consistent�

The rules will require all constraint systems to implicitly be consistent�

The type system assigns I�Soop expressions rc types of the form

� ��� � n C

to indicate an expression of type � which is constrained by the constraints in

C� Since the rules implicitly require C to be consistent� it makes sense to view

� as a type and to write C on the right side of the turnstile as part of the

type�

We de�ne the following notion of subtyping on rc types�

De�nition ��� �Subtyping rc Types� � n C � � � n C �
provided that C �

is

consistent and C�f� � � �g 
 C �
�

Stronger notions of subtyping could be de�ned� but for our purposes this

de�nition su�ces� The type schemes � are as follows�

� ��� � j ��� �

Note that since � � � n C can contain an arbitrary collection of constraints C�

shallow F�bounded polymorphic types are a special case of these polymorphic

rc types�

��� I�Soop Typing Rules

Before giving the rules we describe notation used in the rules� Notation used in

sequent judgements includes the following� A type environment A is a mapping

from variables to type schemes� we use the more intuitive notation �x � � � in�

stead of �x �� � �� Given a type environmentA� the proof system assigns to an

expression e a rc type � n C� written as the type judgement A � e � � n C� un�

der the condition that C is consistent �as mentioned previously� all constraint

sets C appearing in the rules implicitly must be consistent�� we occasionally

�
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�Sub�
A � e 	 �� � � ��

A � e 	 ��

�Num�
A � n 	 Nat n �

�Abs�
Ajj
 x 	 � � � e 	 � � n C

A � �x� e 	 ��� � n C
�App�

A � e� 	 ��� � n C�� e� 	 � n C�

A � e� e� 	 � � n C��C�

�Var�
A�x� � �

A � x 	 � n �
�PVar�

A�x� � ��� �� 
 is a substitution on f�g

A � x 	 
�

�Sel�
A � e 	 � l 	 � � n C

A � e�l 	 � n C
�Record�

A � ei 	 �i n Ci

A � � li � ei � 	 � li 	 �i � n
U

i
Ci

�Inj�
A � e 	 � n C

A � l � e 	 � l 	 � � n C
�Match�

A � ei 	 �i�� n Ci

A � � li�ei � 	 � li 	 �i ��� n
U

i
Ci

�Let�
A � e 	 � n C� Ajj
 x 	 ��� � n C � � e� 	 � � n C�

A � let x � e in e� 	 � � n C�C�

where f�g �

���
��
if e is expansive then AppClos�� n C� A�

else Clos�� n C� A�

Fig� �� Typing rules of I�Soop�

may write A � e� � �� n C�� e� � �� n C�� � � � to indicate several type judge�

ments provable in the same environment� Programs are type�checked in the

initial environment A� assigning the following type schemes to the built�ins�

A� � � succ � Nat�Nat� pred � Nat�Nat� is zero � Nat�Bool�

ref � �u� u�u ref� � � �t� t ref�t� set � �t� � cell � t ref� val � t ��t �

where Bool stands for the type � true �� �� false �� � �� A substitution on f�g is

a map � 
 TyVar � Typ which is the identity on TyVar n f�g and maps

ImpTyVar to imperative types� a renaming  of f�g is a substitution on f�g

with codom� � 
 TyVar� An expression is expansive if and only if it is not a

value� following Tofte ��
� we form type schemes by making the sets of type

variables we generalize over dependent on the expansiveness of the expression�

The de�nitions of these sets are

Clos�� n C� A� � �FTV �� � � FTV �C�� n FTV �A�

AppClos�� n C� A� � Clos�� n C� A� �AppTyVar

where the functionality of FTV is extended as usual to constraint systems� rc

types� type schemes� and type environments�

The typing rules for I�Soop are given in Figure �� Most of the rules have

obvious relation to those of standard systems with subtyping and records� as
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in Tofte�s system ��
�� the typing of ref introduces imperative types� The main

di�erence is the addition of constraints as part of types� the associated sub�

sumption rule on these types� and the way consistent constraints accumulate

from the leaves to the root of a typing proof� It is important to observe that

consistency of constraints is implicitly enforced by each rule� Other presenta�

tions of constrained type systems ��������� do not require local consistency� so

the constraints in the rules have both a hypothetical and assertional compo�

nent� They are hypothetical in that they may be inconsistent� and they are

assertional in that they assert properties of the type if they are consistent�

For this reason they write C on the left of the turnstile� and perform some

top�level consistency check before a proved typing is �true�� Since constraints

are never inconsistent in our rules we have no hypothetical component and

constraints are thus written on the right�hand side of the turnstile�

Some justi�cation is required for the �Let� rule� in which the constraint

system of the let expression contains not only the constraints in C �� necessary

for typing its body� but also those in C� accumulated for the type of the

bound variable� Leaving the latter constraints out �as ��� do� but corrected

in ���� results in a system unsound with respect to the standard call�by�value

semantics of the let expression� C may contain constraints on type variables

free in the environment� and their omission may lead to accepting programs

which get stuck while evaluating the expression assigned to the bound variable�

As an example� consider the expression

��x� let y � �x in succ x� 	

By rules �PVar�� �Var�� �Sub�� and �App� the constraint system C of the rc type

of �x contains � � � �
ref for some type � �� where � is the type associated with

x by the rule �Abs�� This constraint will lead to inconsistency when combined

with the constraint Nat � � at the outermost rule of the typing proof� �App��

If it were omitted from the constraint system of the let� the other constraint

on � � namely � � Nat from the body succ x� would not cause an inconsistency�

and the program would type�check� however its execution obviously leads to

the stuck state h�� let y � �	 in succ 	i�

While the type language does not have recursive types� �x� x x can be given

the rc type t��t� n ft� � t��t�g� We do not have a �bottom� type� but its

positive occurrences may be simulated by an unconstrained type variable� e�g�

��x� x x� �x� x x has the rc type

t� n ft��t� � t�� t� � t��t�g

An unconstrained variable can also be used instead of a �top� type in negative

positions� Positive occurrences of �top� may be simulated by overconstraining

from below�

A� � if true then 
 else � � � t n fNat � t� � � � tg

This constraint system is consistent� Note that not all typable programs are

of this particular �top� type� but they are provably of type t n fNat � t� � � �

��
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tg�C for someC and fresh t by a single use of �Sub�� Similarly overconstraining
from above achieves the e�ect of �bottom� in negative positions�

� Subject Reduction� Soundness� and Type Inference

We prove soundness of the type system by demonstrating a subject reduction

property� First we strengthen the �Let� rule of the system to�

�Let�
A � e � � n C� Ajj�x � ��� � n C � � e� � � � n C ��  is a renaming of f�g

A � let x � e in e� � � � n  C�C �

where f�g 


�
��
��
if e is expansive then AppClos�� n C� A�

else Clos�� n C� A�

Obviously� any use of the original �Let� rule can be trivially transformed
into a use of the stronger rule� by choosing  to be the identity renaming�

This renaming does not add any power to the typing system� any program
that is typable with the stronger �Let� rule is also typable with the original� it
is introduced only to avoid certain technical complications which arise during

reductions within a let expression�

Next� we extend the notion of typing to con�gurations�

De�nition ��� A � hs� ei � � n C if and only if

�� A � e � � n C�

�� Dom�A� � Dom�A�� � Dom�s�� Dom�A�� � Dom�s� � �� and A agrees

with A� on Dom�A���

�� for each x 
 Dom�s� we have A�x� � �x ref and A � s�x� � �x n Cx for

some �x and Cx 
 C�

Theorem ��� �Subject Reduction� If A � hs� ei � �� then either e 
 Val

or else hs� ei ��� hs�� e�i and there exists an environment A� such that A� �
hs�� e�i � �� �

We present only a sketch of the proof in this abbreviated version� The

proof proceeds in the standard fashion� given a con�guration and a proof of

its typability� perform one step of computation and transform the original
typing proof into a proof for the new con�guration� The interaction between
let�polymorphism and reference cells is known to cause signi�cant di�culty

��
�� our approach to this problem derives from ����� avoiding Tofte�s complex

greatest �xed�point construction�

The di�erences between our proof and that of ���� result from the con�

straint systems of rc types and polymorphic rc types� Each step of computa�

tion is accompanied by a proof transformation that pushes constraints present

near the top of the proof tree towards the leaves� The complications of the

proof arise when these constraints are pushed through uses of the �Let� rule�

��
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demonstrating that the type generalizations performed in the initial applica�
tion of the rule remain valid is non�trivial�

This pushing of constraints from the root of the typing proof towards the

leaves during reduction can be considered a lazy approach to proof canoni�
calization� An alternative approach would be to regularize the initial typing

proof of a program to canonical form by pushing all of the constraints present

at the root to the leaves before performing any computation� This would re�
sult in a more straightforward subject reduction proof� at the expense of a
more complicated proof canonicalization lemma�

The soundness of the type system is a corollary of the Subject Reduction
theorem�

Theorem ��� �Soundness� If A� � e � �� then either e diverges� or e com�

putes to a value�

Proof� By induction on the length of computation� using Theorem ���� �

Note we have thus proved soundness of the constrained type system with�
out ever having shown the systems of constraints have a solution�

��� Type Inference

We now de�ne the type inference algorithm and prove it is complete� i�e� if a
program has a type derivation the inference algorithm will infer a type for it�

The strategy we take to reach this desired outcome is the following�

�� De�ne a new set of rules �the inference rules� for which typing derivations

are deterministic�

�� Prove the inference rules are equivalent in strength to the general rules

we had been using previously�

The inference rules appear in Figure 
�

Theorem ��� For all terms e and environments A� it is decidable whether

there exists a � such that A �inf e � ��

Proof �Sketch� By inspection of the rules� there is only one rule for typing
each expression construct� By further inspection� the only nondeterminism

that may be introduced in rule application is the choice of type variables used
in rules �Abs� and �PVar�� We thus choose ��normal proofs that use fresh

variables in every place possible� If a proof exists� there clearly must then

be a corresponding ��normal proof� For expression e the ��normal proof is
unique modulo ��conversion� Thus a decision procedure may be de�ned for
constructing such a canonical proof� The algorithm fails when an inconsistent

constraint system is obtained when combining the constraint systems inferred

for subterms� and detection of such inconsistencies is trivially decidable� �

We now relate the inference rules to the general rules�

��
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�Abs�
Ajj
 x 	 t � �inf e 	 � n C

A �inf �x� e 	 t�� n C
�Var�

A�x� � �

A �inf x 	 � n �

�Sel�
A �inf e 	 � n C

A �inf e�l 	 t n C�f� � � l 	 t �g
�Inj�

A �inf e 	 � n C

A �inf l � e 	 � l 	 � � n C

�Record�
A �inf ei 	 �i n Ci

A �inf � li � ei � 	 � li 	 �i � n
U

i
Ci

�Num�
A �inf n 	 Nat n �

�Match�
A �inf ei 	 �i n Ci

A �inf � li�ei � 	 � li 	 ti ��t n
U

i
�Ci�f�i � ti�tg�

�App�
A �inf e� 	 �� n C�� e� 	 �� n C�

A �inf e� e� 	 t n C��C��f�� � ���tg

�PVar�
A�x� � ��� �� � is a renaming of f�g

A �inf x 	 ��

�Let�
A �inf e 	 � n C� Ajj
 x 	 ��� � n C � �inf e

� 	 � � n C �

A �inf let x � e in e� 	 � � n C�C�

where f�g �

���
��
if e is expansive then AppClos�� n C� A�

else Clos�� n C� A�

Fig� �� Type inference rules of I�Soop�

Theorem ��� �Completeness of Type Inference� Given an environment

A and an expression e� the typing judgement A � e � � is provable for some

� if and only if A �inf e � �� is provable for some ���

Proof	 �Sketch� If A �inf e � ��
is provable� A � e � � is obviously provable

as well� each inference rule is a special case of a combination of �Sub� and a

general rule�

Conversely� typing proofs in the general set of rules may be transformed

into ones using only the inference ones in a two�step process� First� the proof is

transformed into pre�inference form� in which each rule used one of the infer�

ence rules� or possibly �Sub�� In the process� certain types � used in the proof

�such as in the conclusion of rules �Var�� �Sel�� �App�� and the like� are replaced

by fresh type variables t� the corresponding type constraints f� � t� t � �g

are added to the constraint system and bubbled to the top� Similarly� each

assumption x � � is replaced with an assumption of the form x � t� together with

the constraints f� � t� t � �g� for some fresh t� The result is a larger set of

constraints mentioning these new type variables� Demonstrating the consis�

tency of these richer constraint systems as these new constraints propagate to

the root of the proof is non�trivial�

Second� the proof is reworked again� eliminating uses of rule �Sub� induc�

��
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tively� This transformation takes a pre�inference proof of A � e � � n C and

produces an inference proof of A � e � � � n C �� where C � 
 C and either � � � �

or f� � � �g 
 C� This is possible because the antecedents of each inference

rule are simply of the form A � e � � n C� the type � need not be in any special

form for the rule to be applicable� Essentially� this means that a use of �Sub�

followed by another rule can be exchanged� thus moving the subsumptions to

the root of the proof where they can be eliminated� �

Thus from Theorems ��
 and ��� we may conclude that every program

typable under the general rules has a type inferred by the type inference algo�

rithm� Note we establish no principal typing property� The typing produced

by the inference algorithm is indeed �minimal� in an intuitive sense� but it is

not formallyminimal since our de�nition of � � �� is weak� t�Nat n ft � Natg

is not a subtype of Nat�Nat n �� even though any term that can be given the

former type can also be given the latter� We leave the question of principal

typings for future study� since completeness is ultimately all the programmer

desires�

� Applications to OOP

We now illustrate how this type inference algorithm is useful for typing object�

oriented programs� the main motivation for our work� We show its utility in

class�based OOP� we expect it also applies to delegation�style OOP but that

topic is beyond the scope of this paper� The basic OOP concepts we wish

to incorporate include standard notions of object� method� instance variable�

class� inheritance� method�instance hiding� and object lifting � � The more

advanced notions we wish to account for include polymorphism� multiple in�

heritance and binary methods� Without binary methods �in general� methods

that take objects as parameters or return objects as values�� the object typ�

ing problem is not overly di�cult� objects may be interpreted as records of

functions �methods� and cells �instance variables�� inheritance is subtyping�

and object lifting is accomplished by a subsumption rule� As we show� typing

becomes considerably more di�cult in the presence of binary methods �	��

The ideal way to show applicability to OOP would be to de�ne a complete

OOP language� types� and inference algorithm� this is beyond the scope of

this paper� however� Instead� we will show how a collection of simple macros

allow OOP to be embedded into I�Soop�

The basic idea of the representation is to interpret classes as functions on

records �s�� � � � � where s is the �self�� new then takes the �xed point of a class

to produce an object� in the form of a record �see ������ We cannot quite use

this encoding� First� it is di�cult to create �xed points which are records in a

call�by�value language� Second� when taking a �xed point via a Y �combinator�

the semantics entails re�evaluating the record with each recursive access� and

thus erroneously re�initialize any instance variables� In previous work ���� we

avoided these problems by using a memory�based �xed point� Unfortunately

�Also called implicit object coercion or object subsumption	

��
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this encoding will not work here as the use of reference cells to form the �xed

point will infer imperative polymorphic types for objects� We thus opt for

an encoding using a Y �combinator with an initial instance variable allocation

phase� In a more complete treatment of this topic a limited form of memory�

based �xed point such as the single�assignment reference �SAR� of ���� could

be used� We ignore the issue of information hiding in this presentation� though

it is not di�cult to incorporate�

De�nition ��� The object syntax is de�ned by the macros given in Figure 
�

where Y
def

� �y� ��x� x x� �x��z� y �x x� z is a call�by�value Y �combinator� and

!
def

� Y ��x� x��

Note that the class macro binds occurrences of s free in the e��

k� and those

of ui free in e�

j and e��

k�

�class� class s super ui of ei inst xj � e
�

j meth mk � e
��

k

�

��� let u�i � ei � � in let ui �u
�

i ��x�!� in

let y � �xj � ref e�

j � in �s� let ui �u
�

i �s� in

���� inst � y� meth� �mk � e
��

k �

�new� new � �x� Y�x � ��

�message send� e ��m � �e � ���meth�m

�instance read� e�x � ���e � ���inst�x�

�instance write� e��x 	� e� � set � cell � �e� � ���inst�x� val � e� �

Fig� �� Macros for object syntax�

We illustrate the typing problems involved with binary methods through

an example of a GcdNum class that has a binary method gcd that takes another
GcdNum and recursively computes the GCD of itself and the other GcdNum�

In order to keep the example very simple we assume the instance variable

containing the actual number� val� is publicly accessible� and that GcdNum
de�nes no other methods� ZGcdNum is a subclass of GcdNum with an addi�

tional unimportant method zero� Here mod is taken to be a function that

computes the modulus of two numbers�

let GcdNum � class s super
inst

val � �
meth

gcd ��num� if is zero �s�val� then s
else if is zero �mod �num�val� �s�val�� then s

else s�val 	�mod �s�val� �num�val�
 num �� gcd s

�
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The gcd method takes another GcdNum object� num� as argument� Because

num is of the same type as the type of objects of the class we are cur�

rently de�ning� expressing the type of the gcd method will require some self�

referentiality�

We �rst consider appropriate types for the inheritance�is�subtyping paradigm�

This is known to have serious limitations �	�� but is nonetheless frequently

found in commercial OOP languages� In this paradigm we give GcdNum the

type

GcdNum � GcdType�GcdType� where

GcdType � �t� �� ��� val � Nat ref� gcd � t�t ��

Note that � is the usual recursive type constructor� We use it instead of the

I�Soop encoding of recursive types using recursive constraints� new GcdNum

then returns an object of type GcdType� Without inheritance this type is

perfectly adequate� We now look at the adequacy of this type with inheritance�

We extend our example by de�ning ZGcdNum� a subclass of GcdNum that also

includes a method that tests for zero�

let ZGcdNum � class s

super

u of GcdNum

inst

val � u�val

meth

gcd � u �� gcd�

zero ���� is zero �s�val�

In this case we did not override the gcd method� instead� we inherited it from

GcdNum� denoted here by the superclass variable u �in this encoding we explic�

itly state the superclass of each inherited method�� Using the inheritance�is�

subtyping paradigm� the inherited instance variables and methods must have

the same types as in the superclass since these types are �xed� Thus� the type

of ZGcdNum must be

ZGcdNum � ZGcdType�ZGcdType� where

ZGcdType �

�t� �� ��� val � Nat ref� gcd � GcdType�GcdType� zero � � ��Bool ��

Note the gcd method still operates on GcdType� not ZGcdType� Thus if gcd

were overridden in ZGcdNum with a function that used num�s zero method�

this typing would fail� an undesirable fact� Another problem with this typing

is illustrated in the following additional code�

let zgnum � new ZGcdNum in �zgnum �� gcd zgnum� �� zero � �

The gcd method type is not parametric in the type of the object given to it�

Thus it will accept an object of ZGcdType as an argument since by subtyping

ZGcdType � GcdType� but the result returned is only of GcdType� and thus is

not known to have a zero method� The above code will thus not type�check�

�
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even though it executes without error�

An alternative typing is needed� Since we inherit from GcdNum� the ZGcd�
Num objects that eventually are created will have more methods than just gcd�
To capture this� we must take a parametric or open�ended view of the self�type

in GcdNum�s type� The parametricity we desire in GcdNum is that t should
be any subclass with at least gcd and val� and furthermore that gcd paramet�

rically maps t to t� To express the open�ended view as a type� F�bounded

quanti�cation is used as follows�

GcdNum � �t � GcdTypeF�t�� t�GcdTypeF�t�� where

GcdTypeF�t� � � ��� val � Nat ref� gcd � t�t �

ZGcdNum may then be typed as

ZGcdNum � �t � ZGcdTypeF�t�� t�ZGcdTypeF�t�� where

ZGcdTypeF�t� � � ��� val � Nat ref� gcd � t�t� zero � � ��Bool ��

giving zgnum the type �t�ZGcdTypeF�t�� Thus the above code type�checks� In
addition� it would have been possible to override gcd in ZGcdNum� impossible

in the simple recursive�types view�

The F�bounded typing has a drawback� however� ZGcdNum objects can

no longer be lifted to be GcdNum objects �since their types are recursive types

with t occurring negatively�� and thus the following code will not type�check�

let gnum � new GcdNum in
let zgnum � new ZGcdNum in

gnum �� gcd zgnum

Note that the recursive typing would allow this code to type�check�

So� both the F�bounded interpretation of inheritance and the recursive

types interpretation fail to typecheck certain typable programs� Our type

inference algorithm� however� infers types that will allow both of the above

varieties of message send to be typed in a single program�

	�� Types inferred in I�Soop

To simplify the presentation� we will ignore the instance variable val in the

example� We will also simplify the translation scheme to re�ect this� by elim�

inating the �rst line from the macro expansion of class and replacing u
�

i
by e�

and de�ning new as Y�

First consider the types inferred for the classes GcdNum and ZGcdNum�

The simpli�ed translations are

let GcdNum �

�s����� gcd ��num� if � then s
else if � then s
else �num � ���gcd s �

in let ZGcdNum�

�s� let u �GcdNum �s� in

��
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���� gcd � �u � ���gcd�

zero ���� is zero � �

We �rst sketch how the inference system of rules� �inf� infers GcdNum�s

type� These rules are deterministic modulo ��variants so proof construction

is mechanical� Starting from the leaves and using rules �Record�� �App�� and

�Sel� in turn we obtain

A�jj� s � t�� � � ta� num � tb � �inf �num � ���gcd � td n C��

where C� � ftb � � ��tc� tc � � gcd � td �g

Next� using �App��

A�jj� s � t�� � � ta� num � tb � �inf �num � ���gcd s � te n C��

where C� � ftb � � ��tc� tc � � gcd � td �� td � t��teg

Next� expanding the conditional and using �Abs� and �Match� twice�

A�jj� s � t�� � � ta � �inf �num� � � � � tb�t� n C��fte � t�� t� � t�g

Finally� by �Record� and �Abs� twice�

A� �inf GcdNum � t��ta�� gcd � tb�t� � n C��fte � t�� t� � t�g

This is the type inferred by the inference rule system� An actual im�

plemented type inference algorithm would automatically perform a number

of simpli�cations on this type that do not change the meaning� Here we

present these simpli�cations informally by giving typings deduced in the gen�

eral rules that are simpli�ed forms of the inferred types� For GcdNum� ta is

unconstrained so it may be replaced by � � by subsumption� tb has only one

positive occurrence in the type� so it may be replaced with its upper bound�

tc� td and te may also each be replaced� The following type may then be

deduced for GcdNum in the general rules�

�t�� t�� t��� ��� gcd � �� ��� gcd � t��t� ���t� � � n ft� � t�g

Hereafter we present the simpli�ed forms of types only� An actual imple�

mented type inference algorithm would automatically perform these simpli��

cations� For ZGcdNum� the �simpli�ed� inferred type is

�t�� t�� t��� ��� gcd � �� ��� gcd � t��t� ���t�� zero � � ��Bool �nft� � t�g

Contrast these types with the F�bounded type given GcdNum in the �open�

self� encoding above� Observe that the parameter num is an object with

a gcd method� Since that is the only method of num that is used� no more

�elds are required in the inferred type� Contrast that with the F�bounded

case where num has all methods of GcdNum� the open�endedness here is more

precise� each method that is passed the �self� requires that self to only have

the methods actually used� Note also that this is not even an F�bounded

type� the constraint t� � t� is not recursive� Recursive constraints may not

arise in classes� since the knot has not been tied yet�

��
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Consider now the object types� gnum and zgnum have the following �sim�
pli�ed� types inferred�

gnum � �t�� t�� t� n f� ��� gcd � �� ��� gcd � t��t� ���t� � � t� � t�g�

zgnum � �t�� t�� t� n f� ��� gcd � �� ��� gcd � t��t� ���t��

zero � � ��Bool � � t� � t�g

It is di�cult to explain precisely what these types denote� except to say

they are de�nitely not the recursive types used in both encodings for objects

above�

The message sends from the example have the following constrained types�

zgnum �� gcd gnum � t� n f

� ��� gcd � �� ��� gcd � t�a�t� ���t�� zero � � ��Bool � � t�a�

t�a � � ��� gcd � t�b�t� �� t�b � � ��� gcd � t�a�t� �

� ��� gcd � �� ��� gcd � t�b�t� ���t� � � t�b� t�a � t�� t�b � t�g�

zgnum �� gcd zgnum � t�
�
n f

� ��� gcd � �� ��� gcd � t�
�a
�t

�

�
���t

�

�
� zero � � ��Bool � � t

�

�a
�

t
�

�a
� � ��� gcd � t�

�b
�t

�

�
�� t

�

�b
� � ��� gcd � t�

�a
�t

�

�
��

� ��� gcd � �� ��� gcd � t�
�b
�t

�

�
���t

�

�
� zero � � ��Bool � � t

�

�b
�

t
�

�a
� t

�

�
� t

�

�b
� t

�

�
g

Note the function upper bounds of t�a� t�b� t
�

�a
and t

�

�b
can be proved to never

be used� a more complete set of simpli�cation transformations would justify
their removal� Each use of gnum and zgnum gives rise to fresh variables by the

�PVar� rule� if these objects were not let�polymorphic� the two message sends
above would share type variables and generality would be lost� Observe there
are no contradictions in the constraint systems of either of these message sends�

Also note the result type t� is in e�ect the union of t�a and t�b since it is an
upper bound of these two types� This corresponds to the fact that the result of

gcd could be either a gnum or a zgnum� Consider sending a zeromessage to the

result of the second message send� �zgnum �� gcd zgnum� �� zero � �� The rules
force t

�

�
� � ��� zero � � ��Bool � to be added to the constraints� but this is

still consistent� On the other hand� consider �zgnum �� gcd gnum� �� zero � ��

This may give a run�time error� so should not type�check� Indeed� t� �

� ��� zero � � ��Bool � by transitive closure also requires a record with�
out zero to be a subtype of a record with zero� but this is by de�nition an

inconsistent constraint�

Compared to other work on rigorously sound class�based object languages�

neither Bruce�s TOOPLE or TOIL languages ���
�� nor our Loop language ����

allows the above program to type�check� in fact we know of no static type�

�	



Eifrig� Smith and Trifonov

system for object�oriented programming that successfully type�checks this ex�

ample� So� not only do we obtain object type inference� we have a richer type

language where it is not required to choose between �inheritance is subtyping�

and the open�ended view of self�

� Discussion

We have given a new� powerful method for type inference for object�oriented

languages that is in many ways more powerful than previously existing meth�

ods� We have hopes that the core we present here will lead to development of a

full�scale object�oriented programming language incorporating type inference�

What we present here only shows this method is feasible� however� Further

study is necessary to see if it can be implemented e�ciently in practice� There

also is the question of how well other language features will combine with this

inference method� Modules in particular will be a challenge� There also should

be separate syntax and types added for OOP features such as class de�nition

and message send� This will provide a uniform notion of what OOP is to all

programmers� and limit incompatibility of code� Lastly� even though this sys�

tem is signi�cantly stronger than the existing Hindley�Milner�style inference

algorithms� the types it produces are larger and less easily readable by pro�

grammers� Thus it is important to address both the problem of simpli�cation

of these types� and the problem of how a better descriptions of what led to a

type error can be given to programmers�
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